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Fluid  (e.g. water)

u(y) = y/h U

Chapter 1 Introduction 
1.1 Classification of a Fluid (A fluid can only substain tangential force when it moves) 

1.) By viscous effect: inviscid & Viscous Fluid. 
2.) By compressible: incompressible & Compressible Fluid. 
3.) By Mack No: Subsonic, transonic, Supersonic, and hypersonic flow. 
4.) By eddy effect: Laminar, Transition and Turbulent Flow. 

 
The objective of this course is to examine the effect of tangential (shearing) stresses 
on a fluid.  

Remark:   
For a ideal (or inviscid) flow, there is only normal force but tangential force between 
two contacting layers. 
 
1.2 Simple Notation of Viscosity 
 
                                    (tangential force required to move upper 

plate at velocity of U )  
 
 
  
 
 
 
 
From observation, the tangential force per unit area required is proportional to U/h, or 
du/dy. Therefore 

τ ≡ shear stress = tangential force per unit area (F/A) 
h
U

∝   

or  

τ =
h
Uµ  = 

y
u

∂
∂µ           〝Newton’s Law of function〞  (1.1) 

 
µ :  Constant of proportionality 

The first coefficient of viscosity 
Remark: 
E.g. (1.1) provides the definition of the viscosity and is a method for measuring the 
viscosity of the fluid. 
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 In generally, if XYε  represent the strain rate, then 

( )xy xyfτ ε=                                                (1.2) 

τ

ε

Yield stress

plastic
yielding fluids 

Dilatent fluid 
Pesudoplastic fluid

Non- Newtonian 
fluid

Newtonian fluid

  
 

Newtonian fluid: linear relation between τ and ε 

Pesudoplastic fluid: the slope of the curve decrease as ε increase (shear-thinning) of 
the shear-thinning effect is very strong. The fluid is called plastic 
fluid.  

Dilatent fluid: the slope of the curve increases as ε increases (shear-thicking). 

Yielding fluid: A material, part solid and part fluid can substain certain stresses before 
it starts to deform. 

 
Note 

1 Pa (Pascal) ≡ 2m
Newton     (Pascal, a French philosopher and Mathematist) 

          (a unit of pressure ) 

[µ] = [pa · sec]     (= s
m

s
mkg

⋅
⋅

2

2
 = 

sm
kg
⋅

 = 10
scm

g
⋅

)  

 
The metric unit of viscosity is called the poise (p) in honor of J.L.M. Poiseuille (1840), 
who conducted pioneering experiment on viscous flow in tubes. 

1 P ≡ ( )( )scm
g1

 = 0.1 sec⋅pa  
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The unit of viscosity: 

[ ]µ  = 
















∂y
uα
τ  = 





















L
T
L

L
F

2
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 T

L
F

2      ← (Old -English Unit: F-L-T) 

or 

[ ]µ  = 













⋅T

L
T

ML

2

2
 = 





LT
M         ← (international system SI unit: M-L-T) 

 

Denote: 2M
N ≡ Pa, then 

sec1001.1 3
20, ⋅×=° Pacwaterµ  

sec283100, ⋅=° Pacwaterµ  

sec9.1720, ⋅=° Pacairµ  

sec9.22100, ⋅=° Pacairµ  

 
For dilute gas: 

n

T
T









≈

°°µ
µ

               (Power- law) 

ST
ST

T
T

+
+









≈ °

°°

2
3

µ
µ

       (Sutherland’s law) 

 
Where 0µ , 0T  and S depends on the nature of the gases. 

Kinematics Viscosity 
ρ
µυ ≡  

 
 
 
 
 

(liquid): T    → µ

(gas): T    → µ  
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Exp: (Effect of Viscosity on fluid)  
     Flow past a cylinder 
Foe a ideal flow: 

( ) 







−= ∞ 1cos, 2

2

r
RUru θθ  

( ) 







+= ∞ 1sin, 2

2

r
RUrv θθ   

At r = R, u=0, θsin2 ∞= Uv  

The Bernoulli e.g. along the surface is: 

pvPU +=+ ∞∞
22

2
1

2
1 ρρ    (Incompressible flow) 

θ
ρ

2
2

2

2
sin

4
111

2
1

−=−=
−

=
∞

∞

∞

U
v

U

PP
C p  

D’Albert paradox: No Drag. 
 
For a real flow: (viscous effect in) 

µ
ρVD

=Re  

 

Re=0.16  (fig 6)(前後幾乎對稱)  

( ) Re=1.54   (fig 24)前後不對稱
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Red ∼
R eL ∼

       �(pair of recirculating eddies)    
     Re=9.6     (fig 40)       (6 < Re <40)

 R=26 (fig. 26)
d

L

Separation occur

 

90θ > °

90sepθ < °

supercritical

Subcritical
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The pressure distribution then becomes: 
 
 

θ

pC

θ

(White. P.9.   Fig. 1-5)

Supercritical   (separation)
Subcritical  (separation)
Theoretical (invuscid)

-1

1

-2
-3
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Remark: 
 
Newtonian Fluid Non-Newton Fluid 

For a Newtonian fluid: 

τ µ ε
↔ ↔

= −        τ
↔

: stress tension 

                   ε
↔

: rate of strain tension 

                   µ = a constant for a given temp, pressure and composition 

Lf µ is not a constant for a given temp, pressure and composition, then the fluid is 

called Non-Newtonian fluid. The Non-Newtonian fluid can be classified into several 

kinds depending on how we model the viscosity. For example: 

（I）Generalized Newtonian fluid 

    τ η ε
↔ ↔

= −      η = a function of the scalar invariants of ε
↔

  

      
(i) The Carreau-Yusuda Model 

 

( 1)

0

[1 ( ) ]
n

a aη η λε
η η

−
∞

∞

−
= +

−     ε: magnitude of the 
↔

ε  

(ii) power-Law model 

1−= nm εη  

         n<1: pseudo plastic (shear thinning) 
         n=1: Newtonian fluid  
         n>1: dilatant (shear thickening) 

 
（II）Linear Viscoelastic Fluid        → polymeric fluids 
（III）Non-linear Viscoelastic Fluid 
     → The fluid has both 〝viscous〞 and 〝elastic〞 properties. 

 

By 〝elasticity〞one usually means the ability of a material to return to some unique, 

original shape on the other hand, by a 〝fluid〞, one means a material that will take the 

shape of any container in which it is left, and thus does not possess a unique, original 

shape. Therefore the viscoelastic fluid is often returned as 〝memory fluid〞.    
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FIGURE 2.2- 1 Tube flow and “shear thinning.” In each part, the Newtonian behavior 

is shown on the left ○N  ; the behavior of a polymer on the right ○P . (a) A tiny 

sphere falls at the same through each; (b) the polymer out faster than Newtonian fluid. 
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FIGURE2.3-1. fixed cylinder with rotating rod ○N . The Newtonian liquid, glycerin, 

shows a vortex; ○P  the polymer solution, polyacrylamide in glycerin, climbs the rod. 

The rod is rotated much faster in the glycerin than in the polyacrylamide solution. At 

comparable low rates of rotation of the shaft, the polymer will climb whereas the free 

surface of the Newtonian liquid will remain flat. [Photographs courtesy of Dr. F. 

Nazem, Rheology Research Center, University of Wisconsin- Madison.]   
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P1=P2                     P*= (P+ τyy )1 - (P+ τyy)2 > 0 

 

 

 

FIGURE 2.3-4  A fluid is flowing from left to right between two parallel plates 

across a deep transverse slot. “Pressure”are measured by flush-mounted transducer 

“1.”and recessed transducer “2.”○N  For the Newtonian fluid P1=P2. ○P  For 

polymer fluids (P+ τyy )1 > (P+ τyy)2. The arrows tangent to the streamline indicate 

how the extra tension along a streamline tends to “lift ”the fluid out of the holes, 

so that the recessed transducer gives a reading that is lower than that of the flush 

mounted transducer. 
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FIGURE 2.4-2 Secondary flows in the disk-cylinder system. ○N The Newtonian fluid 

moves up at the center, whereas ○P  the viscoelastic fluid , polyacrlamid (Separan 

30)-glycerol-water, moves down at the center. [Reproduced from C. T. Hill, Trans. 

Soc. Rheol , 213-245 (1972).] 
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FIGURE 2.5-1 Behavior of fluids issuing from orifices. ○N  A stream of Newtonian 

fluid (silicone fluid) shows no diameter increase upon emergence from the capillary 

tube ;○P  a solution of 2.44g of polymethylmethacrylate ( mol
gM 610=

−

 ) in 100 

cm3 of dimethylphthalate shows an increase by a factor of 3 in diameter as it flows 

downward out of the tube. [Reproduced from A. S. Lodge, Elastic Liquid, Academic 

Press, New York (1964), p. 242.] 
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FIGURE 2.5-2  the tubeless siphon. ○N  When the siphon tube is lifted out of the 

fluid, the Newtonian liquid stops flowing; ○P  the macromolecular fluid continues to 

be siphoned. 

 

 

FIGURE 2.5-8  AN aluminum soap solution, made of aluminum dilaurate in decalin 

and m-cresol, is (a) poured from a beaker and (b) cut in midstream. In (c), note that 

the liquid above the cut springs back to the beaker and only the fluid below the cut 

falls to the container.[Reproduced from A. S. Lodge, Elastic liquids, Academic Press, 

New York (1964), p. 238. For a further discussion of aluminum soap solutions see N. 

Weber and W. H. Bauer, J. Phys. Chem., 60, 270-273 (1956).] 
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320 熱傳學 

                                     

ReD < 5 無分離流動 

                                            

                                                   

            

 

 

 

                                    

 

                                                                  

 

                                    

 

 

 

                            

 

 

 

 

 

 

圖 7-6 正交流過圓柱之流動情形 

5 到 15 ≤ ReD< 40  

渦脊中具 Foppl 渦旋 

4 ≤ ReD< 90 和 90 ≤ ReD< 150 

渦旋串（Vortex street）為層流 

150 ≤ ReD< 300 
300 ≤ ReD< 3×105 

3×105 < ReD < 3.5×106 

層流邊界層變成紊流  

3.5×106 ≤ ReD< ∞(?) 

完全紊流邊界層 
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圖 7-7 長圓柱及球體之阻力係數 pC 與 Re 數關係 

以下討論不同雷諾數下的物理現象： 

（1） 雷諾數的數量級為 1或更小時，流場沒有分離現象，黏滯力是阻力的唯一

因素，此時流場可由勢流理論(Potential flow theory)來導證，在圖 7-7

中阻力係數隨著雷諾數的提高而直線變化下降。 

（2） 雷諾數的數量級為 10 時，流場漸漸發生渦流，在圓柱後面有小渦旋

(Vertex) 出現，此時阻力的因素除了邊界層阻力外尚有渦流的因素，阻

力係數依雷諾數的提高而下降。 

（3） 雷諾數介於 40 到 150 之間時，圓柱後形成渦旋串(Vertex street) ，產

生渦旋的頻率 fv 與流場雷諾數大小有關，定義 Strouhal 數 Sh： 

∞

⋅
=

u
Df

Sh v
                               (7-32) 

      Sh 與雷諾數 DRe  的關係如下圖 7-8；此時阻力主要由係由渦流造成。 

（4） 雷諾數介於 150〜300 時，渦流串由層性漸漸轉變成紊性，雷諾數 300 到 
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3×10
5
 之間，渦旋串是完全紊性的，流場非二次元性質，必須三次元才能

完全描述流場，分離點的位置變化不大，由 °= 80θ 到 °= 85θ ，且自圓柱

前端到分離點的流場維持屬性，所以此時阻力係數也幾乎維持在固定值。

雷諾數不影響阻力係數也就是說黏滯力對阻力的影響很小。 

 

 

圖 7-8 Sh 數與 Re 數關係 

 

（5） 雷諾數大於 3×10
5
 ，阻力係數 DC  急遽下降，也就是阻力下降，這是因為

分離點往圓柱後面移動的緣故，見圖 7-9[7]；分離點會再往前移。此時

阻力係數會回升。渦脊變窄無次序，不再出現渦流串。阻力的形成可分為

兩個因數，邊界層存在時沿邊界層的地方有黏滯阻力存在，分離點之後面

產生渦流，這是低壓地區，以致有反流的現象，造成圓柱前後壓力不平衡，

是阻力產生的最大原因；當 Re= 610 之後流場本身穩定性不足以維持流場

的穩定，分離點再度向前移，使阻力係數再回升；這些流場現象不僅影響

到阻力，也影響到對流熱傳係數。 
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圖 7-9 管之分離點位置與 Re 數關係[7] 

(二)熱傳係數 

（1） 圓柱四周流場變化多端，要求得各點熱傳係數的解析值是很困難的，

圖 7-10 是 W. H. Giedt [8] 所做的實驗結果，當雷諾數大於 1.4×10
5

之後，熱傳係數 )(θNu 出現兩個最低點，第一個最低點是邊界層由層

性過渡到紊性時發生，第二個最低點則是由於分離現像。 

 

 

 

 

 

 

 

 

 

 

 

圖 7-10 圓柱之 Nu 與自停滯點 

計起角度θ關係 
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1.3 Properties of Fluids 

There are four types of properties: 

1. Kinematic properties 

(Linear velocity, angular velocity, vorticity, acceleration, stain, etc.) 

   —strictly speaking, these are properties of the flow field itself rather than of the 

fluid. 

2. Transport properties 

(Viscosity, thermal conductivity, mass diffusivity) 

Transport phenomena: 

Macroscopic cause            Molecular Transport      Macroscopic Reset  

Non uniform flow velocity         Momentum             Viscosity  

Non uniform flow temp           Energy                 Heat conduction 

Non uniform flow composition     Mass                   Diffusion 

e.g.:
2

1

du
du

µτ =  , 
2dx

dTKg −=  , 
2dx

dx
D A

ABA −=Γ  

3. Thermodynamic properties 

(pressure, density, temp, enthalpy, entropy, specific heat, prandtl number, bulk 

modulus, etc) 

—Classical thermodynamic, strictly speaking, does not apply to this subject, since 

a viscous fluid in motion is technically not in equilibrium. However, deviations 

from local thermodynamic equilibrium are usually not significient except when 

flow residence time are short and the number of molecular particles, e.g., 

hypersonic flow of a rarefied gas.  

4. Other miscellaneous properties 

(surface tension, vapor pressure, eddy-diffusion coeff, surface-accommodation 

coefficients, etc.) 

Property is a point function, 
not a point function. 
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1.4 Boundary Conditions 

(1) Fluid In permeable solid interface 

    (i) No slip: solidfluid VV
→→

=  

    (ii) No temperature jump:   

solfluid TT =  

       or equality of heat flux (when the solid heat flux is known) 

            q
n
TK fluid =
∂
∂ )(  (from solid to fluid) 

Remark:   

If fluid is a gas with large mean free path (Normally in high Mach number & low 

Reynolds No.), there will is velocity jump and temperature jump in the interface. 

(2) Fluid-permeable Wall interface 

     walltfluidt VV )()( =   (no slip) 

     wallnfluidn VV )()( ≠   (flow through the wall) 

     wallfluid TT =        (Suction) 

     qluidwallpnfluidwall TTCV
dn
dTk −≈ (∣ ρ )   (injection) 

Remark: 

     (1) nfluidVρ  is the mass flow of coolant per unit area through the wall. The 

actual numerical value of nV  depends largely the pressure drop across the 

wall. For example: Darcy’s Law given  ⋅−=
µ
kV ▽p 

         or 
1 xx xy xz

yx yy yz

zx zy zz

u k k k
v k k k
w k k k

µ

  
   = −   
     

 

p x
p y
p z

∂ ∂ 
 ∂ ∂ 
 ∂ ∂ 

   

when the thermal contact between solid-fluid is 

good, i.e. 1>>=
k

hLBi ) 



Advanced Fluid Mechanics 
 

 Chapter1- 20 

),,( tyxηη =

Liquid,        P R
y

x

z

Pa

Pa

P

P ( P<Pa)

( P>Pa)

interface
(1)

(2)

Liquid

V

(3) Free liquid Surface 

 

 

 

 

   (i) At the surface, particles upward velocity (w) is equal to the motion of the free  

surface w(x, y, z) =
y

v
x

u
tDt

D
∂
∂

+
∂
∂

+
∂
∂

=
ηηηη
 

   (ii) Pressure difference between fluid & atmosphere is balanced by the surface 

tension of the surface.  

            P(x, y,η ) = )11(
yx

a RR
P +− σ  

Remark: 

In large scale problem, such as open-channel or river flow, the free surface 

deforms only slightly and surface-tension effect are negligible, therefore 

        
t

W
∂
∂

≈
η ,   aPP ≈  

 

(4) Liquid-Vapor or Liquid-Liquid Interface 

                              

21 VV =   ( 21 nn VV =  , 21 tt VV =  ) 

                             21 PP =   (if surface tension is neglected) 

                             21 ττ =                —(*) 

                             or 
n

V
n

V tt

∂
∂

=
∂
∂ 2

2
1

1 µµ , this is the slope
n
Vt

∂
∂

 

need not be equal 
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interface
(1)

(2)

T                            21 TT =  

                            21 qq =  (Since interface has vanishing mass, 

it can’t store momentum or energy.) 

                            or  
n
T

k
n
T

k
∂
∂

−=
∂
∂

− 2
2

1
1         —(**) 

 

Remark: 

(1) If region (1) is vapor, itsµ & k are usually much smaller than for a liquid, 

therefore, we may approximate E.g. (*) & (**) as 

             0)( ≈
∂
∂

liq
t

n
V

 ,  0)( ≈
∂
∂

liqn
T

 

(2) If there is evaporation, condensation, or diffusion at the interface, the mass 

flow must be balance, 
⋅⋅

= 21 mm . 

             
n

CD
n

CD
∂
∂

=
∂
∂ 2

2
1

1  

 

(5) Inlet and Exit Boundary Conditions 

   For the majority of viscous-flow analysis, we need to knowV , P, and T at every 

point on inlet & exit section of the flow. However, through some approximation or 

simplification, we can reduce the boundary condition s needed at exit. 
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Supplementary Remarks 

(1) Transports of momentum, energy, and mass are often similar and sometimes 

genuinely analogous. The analogy fails in multidimensional problems become 

heat and mass flux are vectors while momentum flux is a tension. 

(2) Viscosity represents the ability of a fluid to flow freely. SAE30 means that 60 ml 

of this oil at a specific temperature takes 30s to run out of a 1.76 cm hole in the 

bottom of a cup. 

(3) The flow of a viscous liquid out of the bottom of a cup is a difficult problem for 

which no analytic solution exits at present. 

(4) For some non-Newtonian flow, the shear stress may vary w.r.t time as the strain 

rate is held constant, and vice versa. 

 

         

ε

τ Rheopectic

Thixotropic

t
=const
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r
!R

"!
( , , )X Y Zy

x

0t =

z

(same particle)
t>0
(x, y, z)

Chapter 2 Derivation of the Equations of motion 
2.1 Description of fluid motion 

Consider a specific particle 
At t=0,  x = X, y = Y, z = Z        
At t>0,   

x = X + ∫
t

dt
dt
dx

0
)(   

y = Y + dt
dt
dyt

∫0
)(   

z = Z + ∫
t

dt
dt
dz

0
)(  

or      dt
dt

rdRr
t

)(
0∫+=                                      (2.1) 

),( tRrr =  

                   material position vector (become it represents the 
coordinate, used to �tag� on 
identify a given particle)  

spatial position vector 
(become it locate a particle in space) 

velocity of a particle = time rate of change of the spatial  
position vector for this particle. 

Dt
rD

dt
rdV

R
≡= )(                                  (2.2)  

Where 
Dt
D  denote the time derivation is evaluated with the material coordinate held 

constant, it is called a material derivative. In this approach, we describe the fluid 
particle as if we are siding on this fluid particle. The fluid motion is described by 
material coordinate and time and is often referred to as the Lagrangian description. In 

general, ifQ  is a property of the fluid, we have 

),( tRQQ =  

That is, we measure the propertiesQ  while moving with a particle. The time rate of 

change of Q  is 
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(x, y, z)
y

x

z

=
kdt

dQ )( ( ) ( )lim[ ]Rt

Q t t Q t DQ
t Dt→∞

+ −
="!

#

#
#

 

Note that ( )Q t t+# and Q(t) us the properties of Q for the same fluid particle. 
  However, Q may be measured at a point fixed in space by a instrument. That is  

( , , , ) ( , )Q Q x y z t Q r t= =
!

                             (2.3) 

This is called a 〝Euler Description〞. 

If the spatial coordinate r
!

 are held constant while we take the limit 
( ) ( )( ) lim[ ]r rt

dQ Q dy Q t t Q t
dt t dx t→∞

∂ + −
= =
∂

! !
#

#
#  

The relation between ( ) r

dQ
dt

! and ( )R

dQ
dt

"!  is as follows: 

( , ) ( ( , ), )Q Q r t Q r R t t= =
! ! "!

 

[ ( , ), ( , ), ( , ), ]Q x R t y R t z R t t=
"! "! "!

 

( ) ( )( ) ( )( ) ( )( )R R R R

dQ DQ Q dx Q dy Q dz Q
dt Dt x dt y dt z dt t

∂ ∂ ∂ ∂
= = + + +

∂ ∂ ∂ ∂
"! "! "! "!  

                    u            v            w       = ( )r

dQ
dt

!  

∴  ( ) ( ) QR r

d Q d Q V
d t d t

= +"! !
"!
i∇                          (2.4a) 

or    

DQ Q V
Dt t

∂
= +
∂

"!
i Q∇                                   (2.4b)              

(Convective derivative) 
(Unsteady derivative or local derivative) 

(Material Derivative substantial Euler derivative) 
If moves with the same does stay in a stationary location, nor moves with same 

velocity as the fluid particle ( )V
"!

, but moves with velocity bV
""!

, then  

( , )Q Q r t=
!

 

dQ Q Q dx Q dy Q dz
dt t X dt y dt z dt

∂ ∂ ∂ ∂
= + + +
∂ ∂ ∂ ∂  
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( )r t t+
!
#

( )r t
!

• •
( , )V r t
"! !

bV
"!

( , )V r r t t+ +
"! ! !

# #

Inertia coordinate system

 
 
 
 
 
 
and  

DQ Q V
dt t

∂
= +
∂

"!
i Q∇                                   (2.5) 

( )r
dQ Q
dt t

∂
=
∂

"!  

( )observer
dQ
dt = The time rate of change of fluid property ( , )Q r t

!
measured by 

the observer. 

= ( )b
Q V V
t

∂
+ −

∂

"! ""!
i Q∇  

Similarly: 

      a
!

 = acceleration of a fluid particle 
         = time rate of change of the fluid particle 
 

         = ( )R

dV DV V V
dt Dt t

∂
= = +

∂
"!

"! "! "! "! "!
i V∇                            (2.6) 

Note:  (1) Observer riding with the fluid particle would describe his acceleration in 

terms of a single vector a
!

; the fixed observer would note theV
"!

, ▽V
"!

, 

V
t

∂
∂

"!
, and from these quantities be would deduce the acceleration. 

(2) If the flow is steady ( 0)V
t

∂
=

∂

"!
, the acceleration is not necessarily zero. 

Since, from (2.6) 

 Va V= ⋅
! "! "!

∇  
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2.2 Transport Theorem 
   Consider a volume e.g. a sphere V(t) moving through space so that the velocity of 
each point of the volume is given by V

"!
. The velocity V

"!
 may be a function of the 

spatial coordinate. (if the volume is deforming) and time (if the volume is accelerating 
or decelerating). 

( )
( ) ( , )

V t
I t Q r t dτ= ∫∫∫

!
 

dI
dt
=? 

0

( ) ( )lim
t

dI I t t I t
dt t→

+ −
=
#

#
#  

( ) ( )0

1lim [ ( , ) ( , ) ]
V V tt t t

Q r t t d Q r t d
t

τ τ
→ +

= + −∫∫∫ ∫∫∫# #

! !
#

#
 

(V
"!

: fluid velocity as seen by a fixed observer) 
   

Leibnitz�s Rule in Calculus: 

 ( , )( , ) ( , ) ( , )
B B

A A

d f x t dB dAf x t dt dt f x B f x A
dt x dx dx

∂
= + −

∂∫ ∫  

where A=A(x), B=B(x) and ' '( ), ( )A x B x are continuous in (a, b),  
with a x b≤ ≤  and A t B≤ ≤  

 

∵
( ) ( )

( , ) ( , )
V t t V t

Q r t t d Q r t t dτ τ
+

+ = + +∫∫∫ ∫∫∫#

! !
# # part changing be cause of volume. 

%
( ) ( )

( , )
V t S t

Q r t t d t QV ndsτ= + +∫∫∫ ∫∫
! "!
# # i  

∴
%

0 ( ) ( )
lim

1 { [ ( , ) ( , )] }
t V t S t

dI Q r t t Q r t d t QV nds
dt t

τ
→

= + − +∫∫∫ ∫∫#

! ! "!
# # i

#  

 
By Taylor�s expansion 

( , ) ( , ) . .QQ r t t Q r t t h oT
t

∂
+ = + +

∂

! !
# #  

∴
( ) ( )0 0

1 1( , ) lim [ ] lim
V t V t St t

d QQ r t d t d t QV nds
dt t t t

τ τ
→ →

∂
= + ⋅

∂∫∫∫ ∫∫∫ ∫∫# #

! "!
# #

# #
 

 
2

0

1lim [ ]( )
t

t
t→

+ ∫∫#
#

#
 

V
"!

%n

dτ
%( )sV t nd s⋅

""!
#

sV t
""!
#

ds

%( )SV t n⋅
""!
#

Vol. of cylinder =
V(t)

V(t+ t)#
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so   
( ) ( ) ( )

( , )
V t V t s t

d QQ r t d d QV nds
dt t

τ τ∂
= + ⋅

∂∫∫∫ ∫∫∫ ∫∫
! "! &

'             (2.7)  

       〞General Transport Theorem, 3-D Leibnitz�s Rule〞  
 
Special Cause: 

(1) If the volume is fixed in space. (V
"!

=0 on the S(t), V(t)= fixed ≡V) 

V V

d QQd d
dt t

τ τ∂
=

∂∫∫∫ ∫∫∫                             (2.8) 

(2) If the mass is fixed. (closed system, d D
dt Dt
= ) 

( ) ( ) ( )V t V t S t

D QQd d QV nds
Dt t

τ τ∂
= + ⋅

∂∫∫∫ ∫∫∫ ∫∫
"! &

'              (2.9)  

〞Reynolds Transport Theorem 〞 

By Divergence Theorem 

V
Ad A ndsτ⋅ = ⋅∫∫∫ ∫∫
"! "! &
'▽  

We obtain 

( ) ( )
[ ]

V t V t

D QQd d
Dt t

τ τ⋅
∂

= +
∂∫∫∫ ∫∫∫

"!
▽ ( )VQ  

As V(t)→0 

[ ] [ ( )]D QQ VQ
Dt t

τ τ∂
= + ⋅

∂

"!
# #▽  

As Q=1 

1 ( )D V
Dt
τ

τ
= ⋅

"!#
#

∇  

take limit 

0

1 ( )lim D V
Dtτ

τ
τ→

= ⋅
#

"!#
#

∇  

Rate of the volume change = dilatation 
Therefore:  

if  0V⋅ =
"!

∇   ↔   volume strain is zero                  (2.10) 
↔   incompressible      

This is the basic definition of 〞incompressible〞.  
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.C VV
"!

V
"!

t

t+ t#

Control volume velocity 

(Fluid particle velocity)

Control volume and system at time t

:control volume at t+ t#

:System at t+ t#

V
"!

.C VV
"!

.C VVr V V= −
"! "! "!

 Supplementary material 
    

V
"!

:  Fluid velocity seen by a fixed observer. 
.C VV

"!
: c.v velocity seen by a fixed observer.  

.C SV
"!

: c.s velocity seen by a fixed observer. 
Vr
"!

:  Fluid velocity seen by a fixed observer moving with the c.s. 
   → (see note 5-1 back ) 
 
 
                                                  
 
                                                    
 
 
 
 
 
 
 
If the absolution fluid velocity isV

"!
, then the fluid velocity relative to moving control 

surfaceVr
"!

is 
.C VVr V V= −

"! "! "!
          (4.7)                           

 
 
That is,Vr

"!
is the velocity of the flow as seen by an observer moving with velocity 

.C VV
"!

. For this observer, the control volume is fixed, this E.g. (4.5)or(4.6) can be 
applied if V

"!
is replaced by Vr

"!
, that is 

r
sys cv cs

D bdV bdV bV ndA
Dt t

ρ ρ ρ∂
= + ⋅
∂∫ ∫ ∫

"! &
     (4.8)    

WhereVr
"!

is given in E.g. (4.7)   
 
(3) If the control volume is moving with .C VV

"!
and the volume is deforming. Then the 

volume of the control surface .C SV
"!

 will not be the same as .C VV
"!

, we then have 
Reynold Transport Theorem as (4.8) except that  

.C SVr V V= −
"! "! "!

                         (4.9)  
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V
"!

n

2.3 Conservation of Mass 

(1) For a closed system: ( 0m
⋅

= , Lagrangian Description ) 

( )
0

V t

D d
Dt

ρ τ =∫∫∫   

( ) ( )V t s t
d V nds

t
ρ τ ρ∂

= + ⋅
∂∫∫∫ ∫∫

"! &
'   

( )
[ ]

V t
d

t
ρ

ρ τ⋅=
∂ +
∂∫∫∫

""!
▽ ( )V   

   if V(t) is arbitrary and the integrand is continuous, then 

( ) 0V
t
ρ ρ∂
+ ⋅ =

∂

"!
∇        〞Continuity equation〞              (2.11) 

(Since it is continuous in the 1st order) 
   or 

0V V
t
ρ ρ ρ∂
+ ⋅ + ⋅ =

∂

""! "!
∇ ∇  

( )R

d D
dt Dt
ρ ρ

= ="!  

   ⇒     0D V
D t
ρ ρ+ ⋅ =

"!
∇                                (2.12)          

 
Special Cases: 

(a) For a steady flow: ( 0
t
∂
=

∂
) 

⇒  ( ) 0Vρ⋅ =
"!

▽  

(b) For a incompressible flow: ( 0V⋅ =
"!

∇ ) 

E.g. (2.12)⇒  0D
Dt
ρ
=    

  
 
(2) For a fixed region: 
        
                              =                              
  

 
. .V fluid S fixed

d d V nds
dt

ρ τ ρ= − ⋅∫∫∫ ∫∫
"! &

'       

 

(2.9)

(This implies that ρ is constant along a streamline. ρ is 

not a constant everywhere, but ( ),x tρ ρ=
!

in general.) 

Time rate of increase of 
mass within the C.V 

Not influx of mass across the 
control surface 
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Since V, S is fixed, from E.g. (2.8) with Q= ρ , we have 

V V

d d d
dt t

ρρ τ τ∂
=

∂∫∫∫ ∫∫∫  

Therefore 

V S
d V ndsρ τ ρ= − ⋅∫∫∫ ∫∫

"! &
'   〞conservation of mass〞  (2.13)  

               fixed       fixed 
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Supplementary material 
     

V
"!

:  Velocity of fluid particle seen by a fixed observer. 
.C VV

"!
: Velocity of control volume seen by a fixed observer. 

.C SV
"!

: Velocity of control surface seen by a fixed observer. 
Vr
"!

:  Velocity of fluid particle seen by a observer moving with the control  
volume. 

○1  For non-deforming, no-moving control volume 

.C VV
"!

=0, Vr
"!

=V
"!

  
.C SV

"!
=0  

○2  For non-deforming, moving control volume 

.C VV
"!

= .C SV
"!

 
V
"!

= Vr
"!

+ .C SV
"!

    or Vr
"!

= V
"!

- .C VV
"!

= V
"!

- .C SV
"!

 
= Vr
"!

+ .C VV
"!

 
○3  For deforming, moving control volume 

.. C SC V VV ≠
"! !

 

.C SVr V V= −
"! "! "!

    but .C VVr V V≠ −
"! "! "!

 
 

If the C.V is non-deformed and moving with a velocity of .C VV
"!

, then we have derive 
in chapter 4 that  

.C VV Vr V= +
"! "! "!

                               (5.5) 

WhereV
"!

is the absolute velocity of the fluid seen by a stationary observer in a fixed 
coordinate system, andVr

"!
is the fluid velocity seen by an observer moving with the 

control volume. The control volume expression of the continuity equation is  

. .
0r

C V C S
dV V ndA

t
ρ ρ∂

+ ⋅ =
∂ ∫ ∫

"! &
                    (5.6) 

 
If the control volume is deforming and moving, then the velocity of the surface .C SV

"!
 

and the velocity of the control volume .C VV
"!

as seen by a fixed observer in a stationary 
coordinate. System will not be the same. The relation betweenV

"!
 (absolution fluid 

velocity.) andVr
"!

 (relative velocity referenced to the control surface.) is  
               

.r C SV V V= +
"! "! "!

                                (5.7)   
and the control volume, expression of the continuity equation is remained the same as 
equation. (5.6)  
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2.4 Equation of Change for momentum 
Newton�s second low 

dVF ma m
dt

= =
"!"! !

 

applies only for a point particle of fixed mass m. For a closed system (Lagrangian 
description), it become 

( )V t

D Vd F
Dt

ρ τ =∑∫∫∫
"! "!

                               (2.14) 

The external not forces include forces acting on the body (volume) and on the surface, 
namely. 

body surfaceF F F= +∑
"! "! "!

 

Neglecting magnetic & electrical effect, the only body force is due to the gravitational 
force, thus 

( )
body

V t
F f dρ τ= ∫∫∫
"! "!

 

Where f
"!

 represent the body force per unit mass. 

For any arbitrary position, the surface stresses (surface force/area) not only 
depend on the direction of the force, but also on the orientation of the surface. 
Therefore, the surface stress is a second order tension, and is denoted byσ

(!
. 

Before we involve on the derivation of surfaceF
"!

, we need to know more about 

tension. 
〞pressure〞means the normal force per unit area acted on the fluid particle> 
As the fluid is static, the pressure of the fluid is called hydrostatic pressure. Since 

the fluid is motionless, the fluid is in equilibrium, therefore the 
(Hydrostatic pressure = thermodynamic pressure) 

As the fluid is in motion, the 3 principal normal stresses are not necessary equal, 
and the fluid is not in equilibrium. Therefore, the hydrodynamic pressure is defined by  

(Hydrostatic pressure) ≡ 1 ( )
3 xx yy zzσ σ σ+ +  

and which is not equal to the thermodynamic pressure either. Later we will prove that  

(Hydrostatic pressure) = thermodynamic pressure + '1
3
λ  

 
= (Hydrostatic pressure) 
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Supplementary material 
 
5.2 Conservation of momentum 
Consider a particular moment when the control volume is coincide with the control 
volume, then  

.system C VF F=∑ ∑
"! "!

                            (5.7) 

Newton�s 2nd law for the control mass system is  

sys
sys

D VdV F
Dt

ρ =∑∫
"! "!

                       (5.8) 

                               
   
 
 
From Reynolds Transport Theorem for a fixed spaced, non-deforming control volume. 

. .sys C V C S

D VdV V dV V V ndA
Dt t

ρ ρ ρ∂
= + ⋅
∂∫ ∫ ∫

"! "! "! "! &
 

Apply (5.7) & (5.8) into above equation, we can get the momentum equation for a 
control volume. 

.
. .

C V
C V C S

V dV V V ndA F
t

ρ ρ∂
+ ⋅ =

∂ ∑∫ ∫
"! "! "! "!&

         (5.9) 

                                                                    
                                                               
                                                                 
                                                                  
 
Remark: 

If the control volume is non-deforming, but moves with a velocity of .C VV
"!

, then 
we may take b= V

"!
 in equation (4.8), and get  

. .
r

sys C V C S

D V dV V dV V V ndA
Dt t

ρ ρ ρ∂
= + ⋅
∂∫ ∫ ∫

"! "! "! "! &
         

Combined with (5.7) & (5.8), the above equation can be written as  

.
. .

C Vr
C V C S

V dV V V ndA F
t

ρ ρ∂
+ ⋅ =

∂ ∑∫ ∫
"! "! "! "!&

           (5.10) 

 

= Sum of external forces acting 
on the system 

= time rate of change of 
the linear momentum of 
the system

= time rate of change of 
the linear momentum of 
the system 

= not rate of flow of linear 
momentum through the C.S.
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Since .C VV Vr V= +
"! "! "!

  

Equation (5.10) ⇒  
        

.. .
. .

( ) ( ) C Vr C V r C V r
C V C S

V V dV V V V ndA F
t

ρ ρ∂
+ + + ⋅ =

∂ ∑∫ ∫
"! "! "! "! "! "!&

     (5.11) 

(Non-deforming + moving C.V)         
 
If the flow is steady, then  

.
.

( ) 0r C V
C V

V V dV
t

ρ∂
+ =

∂ ∫
"! "!

 

and from the continuity equation 

. .
0r

C V C S
dV V ndA

t
ρ ρ∂

+ ⋅ =
∂ ∫ ∫

"! &
                     (*) 

The momentum equation of (5.11) reduces to 

..
. .

C Vr r C V r
C S C S

V V ndA V V ndA Fρ ρ⋅ + ⋅ =∑∫ ∫
"! "! "! "! "!& &

 

.
.

0C V r
C S

V V ndAρ= ⋅ =∫
"! "! &

 from equation(*) 

or 

.
.

C Vr r
C S

V V ndA Fρ ⋅ =∑∫
"! "! "!&

                            (5.12)  

(For a non-deforming C.V moving with a constant velocity in a steady state flow) 
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Aside: A second order tension, called a dyad and denoted as AB
"!"!

, satisfies the 
following properties: 

( ) ( )AB C A B C⋅ = ⋅
"!"! "! "! "! "!

 

( ) ( )C AB C A B⋅ = ⋅
"! "!"! "! "! "!

 

A unit tension, II
("!

, is a tension with 
C C⋅ =

(! "! "!
Ⅱ , C C⋅ =

"! (! "!
Ⅱ  

In a Cartesian coordinate system, 

ii j j kk= + +
(! !! !! ! !
Ⅱ  

Now, back to the issue of surface forces, as the fluid is in static equilibrium, the only 
stress is the normal stresses, thus 

pσ = −
(! (!

Ⅱ                  

               = (hydrostatic pressure) 
 
If the fluid is in motion, we assume: 

pσ τ= − +
(! (! )

Ⅱ                                     (2.15) 

                         Viscous stress 
                Thermodynamic pressure 
 
Question:  

Are 〞hydrostatic pressure〞, 〞hydrodynamic pressure〞and 〞thermodynamic 
pressure〞the same? We will answer this question later.  

 
 
 
The surface forces thus become 

( )
( )

s t
F n dsσ= ⋅∫∫
"! (!&
'  

( ) ( )
( )

s t s t
pnds n dsτ= − + ⋅∫∫ ∫∫

)& &
' '  

( )
[ ]

R t
p dτ τ= − + ⋅∫∫∫

)
* ∇ ∇  

Equation (2.14) thus become 
 

1 0 0
0 1 0
0 0 1

  
  =  

    

(!
Ⅱ
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momentum flux tensor

( ) ( ) ( )
[ ]

R t R t R t

D Vd f d p d
Dt

ρ τ ρ τ τ τ= + − + ⋅∫∫∫ ∫∫∫ ∫∫∫
"! "! )

∇ ∇  

 

= 
( ) ( )

( ) ( )
R t S t

V d V V nds
t
ρ τ ρ∂

+ ⋅
∂∫∫∫ ∫∫
"! "! "! &

'  

= 
( )

( )[ ( )]
R t

V V V d
t
ρ ρ τ∂

+ ⋅
∂∫∫∫
"! "! "!

∇  

⇒      
( ) ( )V V V f p

t
ρ ρ ρ τ∂

+ ⋅ = − + ⋅
∂

"! "! "! "! )
∇ ∇ ∇                 (2.16)  

                                          
or                                                    

( ) ( ) ( ) ( )R t R t R t R t

D D DV DVV d V dm dm d
Dt Dt Dt Dt

ρ τ ρ τ= = =∫∫∫ ∫∫∫ ∫∫∫ ∫∫∫
"! "!"! "!

 

                                                                     
                                                                        
                                                                       
                                                                     
                                                                         
 
Equation (2.16) thus has another form of 

D V f p
D t

ρ ρ τ= − + ⋅
"! "! )

∇ ∇                              (2.17)  

Equation (2.17) may be derived from (2.16) either 

L.H.S = ( ) ( )V V V
t
ρ ρ∂

+ ⋅
∂

"! "! "!
∇  

= ( ) ( )( )V V V V V V
t t

ρ
ρ ρ ρ∂ ∂

+ + ⋅ + ⋅
∂ ∂

"! "! "! "! "! "!
∇ ∇    

= ( )V V V V V
t t

ρ
ρ ρ

 ∂ ∂ + ⋅ + + ⋅   ∂ ∂  

"! "! "! "! "!
∇ ∇  

= DV
Dt

ρ

"!
 

By the tenor operation, we show that the left-hand side of the equation (2.16) & (2.17) 
are identical. 
 
 
 

∵
D
Dt

means we follow a fluid particle, 

thus the mass dm is a constant, and not a 
function of time & location.  

(= 0 from continuity equation) 

(2.9) 

(2.16) 
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Chapter 3 Exact Solution of N-S Equation 
 
Assumptions: ○1  Constant Density (Incompressible Flow) 

○2  Constant µ, k, vC , pC  ve C T=  

○3  No body forces 
 
3.1 Parallel Flow 

V u i v j w k= + +  

=0    =0 
or 

0v w= = , but  

( , , , )u u x y z t= , ( , , , )p p x y z t= , ( , , , )T T x y z t=  

1) Continuity equation:        0   0 

0V⋅ =∇  ⇒  0u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

 

⇒  0u
x
∂

=
∂

 ⇒  u does not depend on x    

or   ( , , )u u y z t=  
2) Momentum equation: 

V V V
t

ρ µ∂ + ⋅ = − ∂ 
V 2∇ ∇P+ ∇    

or 

2 2 2

2 2 2

u u u u p u u uu v w
t x y z x x y z

ρ µ
  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + = − + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

2 2 2

2 2 2

v v v v p v v vu v w
t x y z y x y z

ρ µ
  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + = − + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

2 2 2

2 2 2

w w w w p w w wu v w
t x y z z x y z

ρ µ
  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + = − + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

⇒  0p p
y z
∂ ∂

= =
∂ ∂

 ⇒  ( , )p p x t=  
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2 2

2 2

u p u u
t x y z

ρ µ
 ∂ ∂ ∂ ∂

= − + + ∂ ∂ ∂ ∂ 
                            (3.1) 

if we     
2 2

2 2

u p u u
x t x y z

ρ µ
  ∂ ∂ ∂ ∂ ∂

= − + +  ∂ ∂ ∂ ∂ ∂  
 

⇒  
2 2

2 2( ) ( ) ( ) ( )u p u u
t x x x y x z x

ρ µ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= − + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 

⇒  
2

2 0p
x

∂
=

∂
 or p

x
∂

=
∂

 function of t only. 

∴  ( , , )u u t y z= , ( , )p p x t= , ( )n
p f
x

t∂
=

∂
 

3) Energy equation: 
Eq. (2.40) ⇒                                      (v=0)  (w=0) 

2 2 22 ( ) ( ) ( )v
T T T T u v wC u v w
t x y z x y z

ρ µ
  ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + = + + ∂ ∂ ∂ ∂ ∂ ∂ ∂  
 

2 2 2
2 2 2

2 2 2

1 ( ) ( ) ( ) ( )
2

u v u w v w T T Tk
y x z x z y x y z

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

⇒
2 2 2

2 2
2 2 2( ) ( ) ( )v

T T u u T T TC u k
t x y z x y z

ρ µ
  ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ = + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂   
         (3.2) 

∴  ( , , , )T T t x y z=  
 
3.1.1 Steady, Parallel, 2-D Flow 

( 0 , 0 )
t z
∂ ∂

= =
∂ ∂

 

From the pressure discussion, we know 

( )u u y= , ( )p p x= , ( , )T T x y= , constantp dp
x dx
∂

= =
∂

 

The Equation of motion become 
2

2 constantu dp
y dx

µ ∂
= =

∂
                                       (3.3a) 

2 2
2

2 2( )v
T u T TC u k
x y x y

ρ µ
 ∂ ∂ ∂ ∂

= + + ∂ ∂ ∂ ∂ 
                            (3.3b) 

0 0 0
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integrate Eq (3.3a), we have 
2

1 2( ) ( )
2
y dpu y C y C

dxµ
= + +                                (3.4) 

a) Poiseuille (pressure-deriver) duct flows: 

2b x

y u(b)=0

u(-b)=0

u(b)=u(-b)=0

 
Eq. (3.4) ⇒  

2 21( ) ( )( )
2

dpu y b y
dxµ

= −             parabolic profile 

The shear stress is 

2 ( )j i

i j
ij ij

V V
x x

τ µε µ
∂ ∂

+
∂ ∂

= =  

11 ( ) 0xx
u u
x x

τ τ µ ∂ ∂
+

∂ ∂
= = =  (∵ 0u

x
∂

=
∂

 from continuity equation) 

⇒  No normal shearing stresses 

12 21 ( )v u du
x y dy

τ τ µ µ∂ ∂
+

∂ ∂
= = =   

∴ du dp y
dy dx

τ µ= =    

Thus the wall function is ( w y bτ τ =±= ) 

w
d p b
d x

τ =   

From the energy equation: 
2 2

2 2
2 2( ) ( )v

T dp T TC u y k
x dx x y

ρ µ∂ ∂ ∂
= + +

∂ ∂ ∂
  

If the channel is infinitely long, we may assume that the temperature distribution is 
fully-developed, i.e. 

0T
x

∂
=

∂
 or ( )T T y=  only 

Energy equation become 
2

2 2
2

1 ( )d T dpk y
dy dxµ

= −  
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integrate twice 
4

2
3 4

1( ) ( )
12

dp yT y C y C
k dxµ

= − + +     

If the B.C’S are: ( ) wT b T += , ( ) wT b T −− = , then 

4 4
2

4( ) ( ) (1 )
2 2 12

w w w wT T T T y b dp yT y
b k dx bµ

+ − + −+ +
= + + −     

 
When we calculate u(y), we are actually interested in the value of wτ . Similarly, as we 
solve the temperature distribution, we want to know the heat transfer on the walls. 
 
Aside: 

In the temperature section, we mentioned that  

( ) fluid solid fluid
Tk q
n →

∂
=

∂    

For the current case 

n ( )q q n qn= − = −

q qn= −

On upper surface

On lower surface

q  

therefore q k T= − ∇  

n n

fluid

Tqe k e
n

∂
− = − ⇒

∂
 s F

fluid

Tq k
n→

∂
=

∂
     

However, this is not a good way become ne  always change its direction for a 
fixed coordinate frame. Therefore, we may take the positive valve of q as heat 
transfer in the direction of the positive-coordinate axis, then 

q k p= − ∇     

⇒   ( )x y z
T T Tq i q j q k k i j k
x y z

∂ ∂ ∂
+ + = − + +

∂ ∂ ∂
    

⇒   x
Tq k
x

∂
= −

∂
, y

Tq k
y

∂
= −

∂
, z

Tq k
z

∂
= −

∂
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At any point, if 0xq > , it means the x-component of the heat transfer at this 
point is in the +x-axis direction. 

For this case: 

q
y

x

1

2

 

Therefore, we set q  in the direction of +y, then 

dTq k
dy

= −    

(i) If a t p o in t
0q >

 ①
, it means q is transferred upward, therefore, it is from 

the lower wall to the fluid. 

(ii) If a t  p o in t
0q <

①
, the heat is transferred downward, therefore, it is from 

the fluid to the lower wall. 

(iii)If a t  p o in t
0q >

②
⇒  fluid to upper wall. 

(iv) If a t p o in t 0q <
②

⇒ upper wall to the fluid  # 

Take  

q q j=

y

x

 
then    dTq k

dy
= −                                                    

or      
3

2 31 ( ) ( )
2 3

w wT T b dp yq k
b k dx bµ

+ − +
= − − 

 
     

Hence 

3
21( ) ( )

2 3
w wT T b dpq b k q

b k dxµ

+ −
+ −

= − − ≡ 
 

    

3
21( ) ( )

2 3
w wT T b dpq b k q

b k dxµ

+ −
− −

− = − − ≡ 
 

    

q>0, heat transfer upward 
q<0, heat transfer downward 
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Remark: 

(1) 2 21( ) ( )( )
2

dpu y b y
dxµ

= − −  

if 0dp
dx

= , no fluid motion. 

0dp
dx

<  ⇒  ( ) 0u y = , or the fluid is moved to the right. 

Therefore 

P is a driving force of 
    the motion
∵

lowP  largeP  

 

(2) w
dp b
dx

τ = ± , why ( ) ( )w lower
dp b
dx

τ = − , while ( ) ( )w upper
dp b
dx

τ =  ? 

since n nτ τ= ⋅  

( )lower surface
of fluid

m n nmn jnj e e eτ τ τ= − ⋅ = −  
 

   (j= 2, n=1, 2, 3) 

21 22 23i j kτ τ τ= − + +    

0        ( ) 0v w
z y

µ
 ∂ ∂
= + = ∂ ∂ 

 

(Normal stress)  ( 0)
z
∂
=

∂
 (w=0) 

                                             2-D    parallel flow  

= ( ) 0w
dpi bi
dx

τ− = − >   ( ( ) 0)dp
dx

<∵     

Therefore ( ) 0w lowτ <  means lower wallτ  is acted on the negative direction 

of i . 

Similarly: ( )m n nmn jnupper wall j e e eτ τ τ= + ⋅ = +   (j=2, n=1,2,3) 

 

21 ( ) ( ) 0w upper
dpi i bi
dx

τ τ= + = + = + <     

 

Therefore, upper wallτ   is still in the direction of –x axis. 
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(3) ( ) ( )q b q b≠ −  because w wT T+ −≠   

However, if w wT T+ −= , we know the results that  

3
2( )

3
b dpq

dxµ
+ = +    

3
2( )

3
b dpq

dxµ
− = −    

Why these is a difference in sign? Does it mean that one wall is received 
heat while the other given away the heat? The answer is that 

 0q+ >   ⇒  heat transfer upward  ⇒  from fluid to the upper wall 
0q− <   ⇒  heat transfer downward ⇒  from fluid to the lower wall 

To understand the flow in more detail, let’s see the temperature profile for 
the case of: 

w w wT T T+ −= =    

4 4
2

4( ) ( ) (1 )
12w

b dp yT y T
k dx bµ

= + −    

 
0≥  

wT

wT          

wτ

wτ 0
 

The shearing stress is 
du dp y
dy dx

τ µ= =    
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Question:  
Why the temperature is highest but the shearing stress is minimum (zero) 
along the centerline? 

Answer: 
The high viscous force along the walls will produce a large amount of 
dissipation energy. In turn, it will increase the internal energy of the fluid 
near the wall. Partial internal energy transport to the wall due to dissipation 

gradient,
3

2( )
3w
b dpq

dxµ
 

= 
 

, the rest of viscosity. Along the centerline, the 

fluid received the diffused energy from upper & lower surface, thus it has 
the max temperature. 

 
b) Poiseuille (pressure-driven) pipe flow: 

(Parallel flow: planar (2D) flow, or Axisymmetric flow.) 
In cylindrical coordinate: 

x rV ue ve weφ= + +    

and 

( , )u u r x= , v = w =0 (parallel), 0
φ
∂

=
∂

 (2-D) 

( , )P P r x=      (may be! Write down in this way temperature) 
( , )T T r x=    

Continuity:  

2 3 1 3 1 2
1 2 3

1 ( ) ( ) ( )V h h v h h w h h u
h h h r x

α
φ α

 ∂ ∂
⋅ = + + ∂ ∂ 

∇    

1 ( ) 0ru
r x

∂ = = ∂ 
   

( )nu f x≠  →  ∴ u = u(r) 
Momentum: 

V V V V
t

ρ µ
 ∂

+ ⋅ = − ∂ 

2∇ ∇P+ ∇   

1 2 3

1 1 2 2 3 3

1 1 1e e e
h x h x h x

∂ ∂ ∂
= + +

∂ ∂ ∂
∇    

1
r X

r

e e e
x r x X

φ

φ

∂ ∂ ∂
= + +
∂ ∂ ∂

    

 

R

r

x

h1=h3=1 
h2= r 
x1= r 
x2=φ   
x3=X 
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( ) ( ) ( ) ( )x x x r x r x
du duV ue u e u e e e e e
dr dr

= = + = =∇ ∇ ∇ ∇     

0 (∵ xe  is fixed, however ,re eφ  are not ) 

( ) ( ) ( )( ) 0x r x x r x
du duV V ue e e u e e e
dr dr

⋅ = ⋅ = ⋅ =∇    

r x
p pp e e
r x
∂ ∂

= +
∂ ∂

∇    

2 3 1 3 1 2

1 2 3 1 1 1 2 2 2 3 3 3

1 ( ) ( ) ( )h h h h h h
h h h x h x x h x x h x

 ∂ ∂ ∂ ∂ ∂ ∂
= + + ∂ ∂ ∂ ∂ ∂ ∂ 

2∇    

1 1( ) ( ) ( )r r
r r r r x xφ φ
 ∂ ∂ ∂ ∂ ∂ ∂

= + + ∂ ∂ ∂ ∂ ∂ ∂ 
    

2 1 1( ) ( ) ( )V V VV r r
r r r r x xφ φ
 ∂ ∂ ∂ ∂ ∂ ∂

= + + ∂ ∂ ∂ ∂ ∂ ∂ 
∇    , ( ) xV u r e=    

0 ( ( ) rV u r e= )  0 

1 ( ) x
ur e

r r r
∂ ∂ =  ∂ ∂ 

   

∴ Momentum equation: 

x-dir: 0 ( )p ur
x r r r

µ∂ ∂ ∂
= − +

∂ ∂ ∂
                                  (3.5) 

r-dir:  0p
r
∂

=
∂

 ⇒  p=p(x)      

Eq. (3.5) ⇒    

( ) constantdp d dur
dx r dr dr

µ
= =   

( )nf x     ( )nf r     

integrate twice with the B.C.’s: (i) u(r) = 0  (ii) 
0

0
r

du
dr =

= , we obtain 

2 21( ) ( )
4

dpu r R r
dxµ

= − −         (parabolic profile) 

 
2

max 0

1
4r

dpu u R
dxµ=

= = −    

∵ L.H.S = ( )nf x  
   R.H.S = ( )nf r  

∴the only solution is that it is a constant
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Volume flow rate, 
4

0
( )(2 )

8
R R dpQ u r r dr

dx
ππ
µ

= = −∫    

The mean velocity, 
2

2
max

8 2
uQ R dpu

R dxπ µ
= = − =     

Shear stress at wall 1 4( )
2w

du dp uR
dr dx R

µτ µ= = − =     

2
16

1 Re
2

w
f

D

C
u

τ

ρ
≡ = , where D

uDRe ρ
µ

=    

which agrees wall with the experiment data for laminar flow 

fC

ReD

16
Re d

2000

laminar

transition

turbulent

experiment

 

 
Energy equation: 

22 :v
TC V T p V k T
t

ρ µε ε∂ + ⋅ = − ⋅ + + ∂ 
∇ ∇ ∇               (2.40)  

( ) xV u r e=    

r x
duV e e
dr

=∇  ,  ) x r
t duV e e

dr
=(∇     

1 1( ) ( )
2 2

t
r x x r

duV V e e e e
dr

ε  = + = + ∇ ∇     

21: ( ) :
2

r x x r r x x r
du e e e e e e e e
dr

ε ε    = + +        
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21( ) : 2 : :
2

r x r x x r r x x r x r
du e e e e e e e e e e e e
dr

 = + +   

( )( )
1

x x r re e e e= ⋅ ⋅
=

 ( )( )
0

r x r xe e e e= ⋅ ⋅
=

 

21 ( )
2

du
dr

=                    

0V⋅ =∇  (Incompressible flow) 

( ( ) ) ( ..)x x
T TV T u r e e u
x x

∂ ∂
⋅ = ⋅ + =

∂ ∂
∇     

2 1 1( ) ( ) ( )T T TT r r
r r r r x xφ φ
 ∂ ∂ ∂ ∂ ∂ ∂

= + + ∂ ∂ ∂ ∂ ∂ ∂ 
∇      

 
Assume ( )T T r=  only then Eq. (2.40) becomes  

20 ( ) ( )du k dTr
dr r r dr

µ ∂
= +

∂
          (fully-developed in temperature) 

Sub. ( )du
dr

into the above equation, and integrate twice with the B.C.’s: 

 ○1  ( ) wT r T=    ○2  
0

0
r

dT
dr =

= , we have  

2 4 41( ) ( ) ( )
64w

dpT r T R r
k dxµ

= + −       

Remark: 

    ○1  Can discuss 2~ ( )wall
dpq
dx

, while ~ ( )w
dp
dx

τ and ~ ( )dpQ
dx

, 4~Q R    

 
 
c) Couette (Wall Driven) Duct Flow: 

1,u U T T= =

00,u T T= =

x
y

(p= constant)

(a constant)

(a constant)

2h

fixed
 

continuity: 0u
x
∂

=
∂

   

momentum: 
2

20 d u
dy

µ=     

Since the plate is infinite long with constant wall temperature, the temperature 
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u(y)U

1.0

0

-1 0

y
h

can be assumed fully developed. Thus T=T(y) only. The energy equation reduces 
to  

 
2

2
20 ( )du d Tk

dy dy
µ= +     

From momentum equation & B.C.’s, we have velocity distribution 

( ) (1 )
2
U yu y

h
= +       

shear stress at any point. 

( )
2

u v U const
y x h

µτ µ ∂ ∂
= + = =

∂ ∂
     

fC ≡  function coefficient 

2

1
1 Re2 hUhU

τ µ
ρρ

≡ = =  , where Reh
Uhρ
µ

=     

Knowing u
y
∂
∂

, we can get T(y) from energy equation & B.C.’s: 

 
2 2

1 0 1 0
2( ) (1 )

2 2 8
T T T T y U yT y

h k k
µ+ + = + + −  

    

                                                                  
(Due to conduction of fluid)   (Due to viscous dissipation) 

 
Define: Brinkman Number, Br 

2

1 0( )
U dissipation effectBr

k T T conduction effect
µ

≡ =
−

 

 
    

2

1 0

Pr
( )

p

p

C U Ec
k C T T

µ
= =

−
    

1T

0T

(Br=0 means the flow is pure conduction
 since dissipation effect is zero)

y
h

1

0

-1
T(y)

Br=0
8 16
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Question:  
From velocity profile, the m axu occurs at y = h (upper plate) and τ  is 
constant at any point. It looks that the viscous dissipation should have equal 
magnitude every where or at least near the upper plate. But as we can see 
from temperature profile, the m axT  does not occur at hot upper plate, why? 
Explain this from physical phenomena?    

 
Answer: 

Energy dissipation is independent of y, as well asτ . But since the wall 

temperature is different, therefore, u p p erq  is lower while lowerq  is higher 

as can be seen from wallq  on next page. Thus, maxT  occurs in upper half 
region. 

 
 
As the given example in p.108 of white, except for giving oils, we commonly 
neglect dissipation effect in low speed flow temperature analysis. (∵Br is very 
small) 
Heat transfer at the walls: 

 
2

1 0( )
2 4w

h

T k Uq k T T
y h h

µ

±

∂
= = − ±

∂
                        (*)         

the heat convection coefficient, ch , is defined as  

1 0

w w
c

q qh
T T T
=

−
=                                     (**) 

Define   

Nusselt 0
c

u
h LN N
k

≡ ≡     

Take characteristic length L=2h, we have 
(2 ) 1

2
c

u
h h BrN

k
= = ±      

Since Br =0 means the dissipation effect is zero, the flow is pure conduction heat 
transfer. (Nu = 1+0 = 1 here) Thus, the numerical value of Nu represents the ratio 
of convection heat transfer to conduction for the same value of T .  
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d) Couette (Wall Driven) Pipe Flow 
 
For the flow between two concentric cylinders rotating at angular velocity 1w  
and 2w , the fluid has velocity of 

r zr zV u e u e u eθθ= + +   

Assume: 
0r zu u= =     

( )u u rθ =     
( )p p r=   
( )T T r=     

constantρ =     

 

1r

2r θ

r
1ω

2ω

z

z

rx

y

 
 
 
The continuity equation is identically satisfied. The momentum equation can be 
reduced as 

2u dp
r dr
ρ

=        (in r-dir)                           (3.6a) 

and 
2

2 ( ) 0d u d u
dr dr r

+ =   (inθ -dir)                          (3.6b) 

 
With the B.C.’s: (i) 1 1 1( )u r w r=   

(ii) 2 2 2( )u r w r=     
Eq. (3.6b) becomes 

2 2
2 2 1 2

2 2 1 1 2 12 2
2 1

1( ) ( ) ( )r ru r r w r w r w w
r r r

  = − − − −   
         (3.7) 

 
 

paralle

2-D + fully-developed 
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Remarks: 
(1) If 2r →∞ , 2 0w →  

(i) 2 2 2
2 1 2r r r− ≈    

(ii) 2 0w → , 2r →∞   ∴ 2 2w r →  uncertain No: however 

2
2 2w r →∞ , ∴ 2 2 2

2 2 1 1 2 2w r w r w r− ≈     

2 2 2 2
2 1 2 1 1 1 1

2 2 1 22
2

1( ) r r r w r wu r rw r w rw
r r rr

  ≈ + = + = 
  

    

2
21 1

1 1( ) ( )(2 ) 2r wcirculation u r d r w r const
k

π πΓ ≡ ≡ = = =∫      

 ∴ 0( )
2

u r
rπ

Γ
=   

 

0V× =∵∇

  potential vortex (free vortex)
,No vorticity

Orientation of Will not change

u

r +

+ +

 
 
 

(2) If 1 1 0r w= =  (No inner cylinder) 

{ }2
2 2 22

2

1( )u r rw r rw
r

= =  

0V× ≠∵∇

r

u
  Rigid body rotation (froce vortex) 

Orientation of Of the cross Will change

+

+
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2 2

2

1 1 ( )

0 0

r ze re e
rw wV

r r z r r r
rw

φ

φ
∂ ∂ ∂ ∂ × = = = = Ω ∂ ∂ ∂ ∂ 

∇       

0r=
Ω →∞∴   

(3) A 〝Tornado〞is a combination of potential vortex & Rigid-body 
 rotation. 

V×∇

( )u r
r

 
The viscous stress of the fluid can be stress as  

r r
du u
dr rθ θτ τ µ  = = −  

                            (3.8) 

The moment on the outer cylinder of unit height is  

2
2

( )
S

M r n dsτ= × ⋅∫∫        

By Eq. (3.8), we can show that  

2 2
1 2 2 1

2 2 2
2 1

( )4 r r w wM
r r

πµ −
=

−
                           (3.9) 

 
From the energy equation; we can derive the temperature distribution as 

2
1 22 22

2 1 11 2
1

1( ) ( ) ( )
( )

r rT r T n T nrr r rr rn r

α α ∂
= + − + − 

 
    (3.10) 

where  
22 2

1 2 1 2
2 2

2 1

( )r r w w
k r r
µα
 −

= −  
− 

     

Remark:  The derivation of Eqs. (3.6)~(3.10) can be left as a homework problem for 
the students. 
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e) Combined Couette and Poiseuilli Duct Flow 
 

1 1( ) , ( )u h U T h T= =

0(0) 0, (0)u T T= =

1U

h

x
 

Then the solution of the momentum of (3.4) becomes 
2

1( ) (1 )
2

U h dp y yu y y
h dx h hµ

= − −     

1U pressure gratient parameter≡ Ρ =       
or  

1

(1 )u y y y
U h h h

= + Ρ −     

The velocity profile is: 

3Ρ = −
1As Ρ < − 

;backflow occurs. 
This is called the separation of the flow

h

1.00

-2
-1

0 1 2 3

The function along the upper & lower 

0,( )w y h
du
dy

τ µ±
==    , 2

1
1

2
f

wC
Uρ

τ
≡     

We have 

0
2( ) (1 )

Ref yC = = + Ρ , where 1Re U hρ
µ

=        

2( ) (1 )
Ref y hC = = −Ρ     

∴ (Re, )f fC C= Ρ       
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In general: 

(Re, , , Pr)pw
f f

w

CTC C
T k

µ+

−= Ρ =               

(If consider conductivity) 
If the flow is compressible, connected with the 
energy equation 

 
For the energy equation, if we assume also T=T(y) only, then  

2
0 1

1 0 1 0

1 (1 )
2 ( )

T T y U y y
T T h h T T h h

µ−
= + −

− −
    

2
1

0

Pr
( )

p

p

C U Ec
k C T

µ
= × ≡ ⋅                          

Where ( 0 1 0T T T≡ − ) 

.Pr Prandtlp
No

C viscous diffusion rate
k thermal diffusion rate

µ
≡ ≡ = 

  

  
                       

2
2ad1

0 0 0

2( T)Eckert No. = ( 1)
( ) ( ) ( )p

U TEc r M
C T T T

∞≡ ≡ = − , M→Mach No.                

≈  work of compression (or the absolution temperature 
of the free stream)/(temperature difference) 
(Ec is important when the velocity is comparable with 
sound speed.) 

also  y
h

η =      

then  0

1 0

1 Pr (1 )
2

T T Ec
T T

η η η−
= + ⋅ −

−
            

 

y
h

Pr 0Ec⋅ =

0

1 0

T T
T T

−
−

1 4 8
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3.2 Simple Unsteady Flow 
 
Assumptions:  (1) Constant density, constantρ =    

(2) , , kµ λ  constants   

(3) planar parallel flow 0
z
∂
=

∂
, 0v w= =     

With the assumption above, we can only have 
( , , )u u t x y= , ( , , )p p t x y= , ( , , )T T t x y=     

By continuity equation: 0u
x
∂

=
∂

 ⇒  ( , )u u t y=   

By y-momentum equation: 0p
y
∂

=
∂

 ⇒  ( , )p p t x=     

By x-momentum & continuity: 
2

2 0p
x

∂
=

∂
 ⇒  ( )p fn t

x
∂

=
∂

 only 

∴ ( )p fn t
x
∂

=
∂

                      (3.11) 

The x-momentum and energy equations become 
2

2

1u dp u
t dx yρ

∂ ∂
= − +

∂ ∂
ν                                   (3.12) 

2 2
2

2 2( ) ( ) ( )v
T T u T TC u k
t x y x y

ρ µ∂ ∂ ∂ ∂ ∂
+ = + +

∂ ∂ ∂ ∂ ∂
                 (3.13) 

 
3.2.1 Stokes First problem (Rayleigh’s problem) 
 
Consider a semi-infinite space, y 0≥     

y

x  
The air (or any medium) is still for 0y ≥ , t < 0. 
At t = 0, become wall impulsively moves to speed U0  

0U

( , 0)U t y =

t
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The question is: What is the subsequent motion for y>0, and t>0 ? 

First of all, we notice that there is 2 equations ((3.12) & (3.13)) but 3 unknown (p, 

u, T). One unknown should be removed first. From Eq. (3.11), we have get ( )dp fn t
dx

=  

only, i.e. at a certain time (a fixed time) the value of dp
dx

 is not a function of position, 

or the value of dp
dx

 is the same at any point of the flow domain. For our problem, as 

y →∞ , u should approach to zero velocity for t >0, therefore,  
2

2 0
y y y

u u u
t y y→∞ →∞ →∞

∂ ∂ ∂
= = =

∂ ∂ ∂     

Eqn (3.12) ⇒   

2

2

1

y y y

u dp u
t dx yρ→∞ →∞ →∞

∂ ∂
= − +

∂ ∂
ν     

⇒  0
y

dp
dx →∞

=     

From our arguments that dp
dx

 is not a function of position, hence 

0dp
dx

=     everywhere                              (3.14) 

And the momentum equation becomes 
2

2

du u
dt y

∂
=

∂
ν                                          (3.15) 

with B.C.’S 0( , 0)u t y U= =    ( , ) 0u t y →∞ =     

Eg. (3.15) is a P.D.E, we try to change it into a O.D.E, which will be easier to be 

solved. Sinceν is a constant, Eq.(3.15) become 

2

2( )
u u

t y
∂ ∂

=
∂ ∂ν
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the independent variables are tν  and y, therefore, a new variable should contain this 

two parameters. Furthermore, we want the new variable to be dimensionless. In this 

way, if we also set a new dependent variable to replace the old dependent variable u, 

the equation will be dimensionless. We therefore can solve the O.D.E easier and once 

for ever. Thus, define 

( )y tα βη = ν  , 
0

( )u f
u

η=     

try the dimensional analysis 

[ ] [ ]

2
2

3

u
y

F L MLL LTL FLTT T
M M M

L

τ
µ
ρ ρ

∂
∂

 
  ⋅

⋅    = = = = = 
 

ν     

2L
T=     

[ ] 2L=νt  , [ ] L=y    

So if want to dimensionlizeη , we should Take  

1∂ =    &  1
2

β = −     

Thus         
2

yη =
νt

                                          (3.16)      

Recall  

0

( )u f
u

η=                                          (3.17) 

0 ( )u U f η=     

1
2 22

y
t t t
η η∂ −
= − =

∂ νt
 , 1

2y
η∂
=

∂ νt
   

0 0 2
u df dfU U
t d t d t

η η
η η

∂ ∂
= = −

∂ ∂
 

0 0
1

2
u df dfU U
y d y d

η
η η

∂ ∂
= =

∂ ∂ νt
   

2 2

02 2

1
4

u d fU
y dη
∂

=
∂ νt

     

 

The coefficient 2 in the denominator 
is taken to make the final O.D.E. 
more easier to be integrated  
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Eq. (3.15) ⇒    
2

0 2

1
2 4

df d fU
d t d

η
η η

− = 0νU
νt

    

⇒            
2

2 2 0d f df
d d

η
η η

+ =                                    (3.18) 

with B.C’S: ○1  0η = , (0) 1f =     

○2  η →∞ , ( ) 0f ∞ =     

Eq. (3.18) ⇒  
'

'
' 2 0df f

f
η+ =      

⇒  
'

' 2df d
f

η η= −     

⇒  ' 2
1 n f Cη= − +      

or      
2'f Ae η−=     

integrate again 

2

f A e d Bη η−= +∫      

○1  0η = , (0) 1f =  
20 -

0
1=A e d Bη η +∫      ∴ B=1  

○2  η →∞ , ( ) 0f ∞ =     

2-

0
0=A e 1dη η

∞
+∫      ∴

2-z

0

1 1

e 2

A
dz π∞

− −
= =
∫

 

∴      
22( ) 1f e dηη η

π
−= − ∫     

or       
2

0

2( ) 1 zf e dz
η

η
π

−= − ∫                                 (3.19a) 

( )erf η     
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∴       ( )f η  1 ( )erf η= − ≡  ( )erfc η                      (3.19b) 

Complementary error function    

η

0

u
U 0

u
U

t increase 

1.01.0

y

 

 

2 20
0 0

( ) 2 1( )( )
2

Udu df dU U e e
dy d dy

η ηη η
η π π

− −−
= = − =

νt νt
    

0

0
w

y

Udu
dy

µτ µ
π=

= = −
νt

                                (3.20) 

The displacement thickness ( )tδ  is defined as  

0 0
( ) ( , )U t u y t dyδ

∞
= ∫    

0U

δ

=At given t   

U

y

 

or        
00 0

( ) ( , ) ( )u dyt y t dy erfc d
U d

δ η η
η

∞ ∞

= =∫ ∫    

0
2 ( )t erfc dη η

∞
= ∫ν     

integrate by parts 

0
)0 (  )(   d erfc dderfc η η ηηη η ∞ ∞

− ∫      

0
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η

( )erf η

η

( ) 1 ( )erfc erfη η= −

2

1

 

 
2( ( )) ( ) 2d erfc df e

d d
ηη η

η η π
−= = −    

2

0

2( ) 2 ( )t t e dηδ η η
π

∞ −∴ = − −∫ν     

2 2 2

0 0
2 2 2 ( )t te d e dη ηη η η

π π
∞ ∞− −= =∫ ∫

ν ν
    

2

0
2 2t te η

π π

∞
− = − = 

ν ν
                        (3.21) 

 
for example: 
 
at t=10 sec 

 ν(m2/s) δ (m) µ (Pa Sec) 
Air,40℃ 1.71×10-5 0.0147 17.1 
Water,℃ 6.61×10-7 0.0029 655 

Lubricating Oil,℃ 1×10-4 0.0357 ---------------- 
 
Remark:  At the first glance, it seems strength that the strength of the momentum 

transport (or the speed of the propagation of the external disturbance) in 
three different fluid is:   

Oil > Air > water 
While the µ  of there is in the order of  

Oil > water > Air  

However, it is reasonable, since δ  ~ ν1/2 ~
ρ
µ  , not only depend onµ . 

 
 

Kg/m s 
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How about the temperature change if we imposed suddenly a temperature to the 
boundary? Similarly, we will obtain 

π
αδ tt 2)( =Τ                                 (3.22) 

where 

Cpρ
κα =     

( )
Pr

( )T

t
t

µδ
δ α

∴ = =
ν

  (Pr= Cp
k

µ )                  (3.23) 

Remarks:  

(1) as Pr>1 , the µδ  is larger than Tδ  

(2) Typical values of Pr for different fluid are 
Fluid Mercury He Air F-12 Methyl 

alcohol(甲醇) 
Water Ethyl 

alcohol(乙醇)
Pr 0.025 0.7 0.72 3.7 6.8 7.0 16 

 
Fluid SAE 30 oil 

Pr 3500 

(The 
T

µδ
δ

are in the order of Air < Water < Oil, now!) 

 
3.2.2 Stokes Second Problem---Oscillating plate 
 

x

y

 
Governing equation: 

2

2

u u
t y

∂ ∂
=

∂ ∂
ν                     (3.24) 

B.C.’s :  u (y = 0, t) = U0 cosωt    
u (y→∞, t) = 0 
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It is convenient (and make the procedure easier) to use a complex variable to solve the 
problem. Furthermore, if we are doing the problem of 0(0, ) sinu t U wt= , we can take 
the imaginary part of the solution and it is no need to do the problem twice. 

sini te cos t i tω ω= +∵    

we take the B.C. as 

0( 0 , ) i tu t U e ω=                          (3.25) 

Use separation of variables, we assume 

0( , ) ( )i tu y t U e f yω=                      (3.26) 









Eg.(3.25) of B.C. under thesolution   theisWhich           

 Eg.(3.26). ofpart  real  thebe  willproblem  thisfosolution  The :Note
   

0

2

0 02,

i t

i t i t

u i U e f
t
u uU e f U e f
y y

ω

ω ω

ω∂
=

∂
∂ ∂′ ′′= =
∂ ∂

 

sub into egn.(3.24) yields: 

0 0
i i ti U e f U e fω ωω ′′=ν                   

0if fω′′ − =
ν

                                 (3.27) 

Use characteristic equation to solve, i.e. we assume 

2,y y yf e f e f eλ λ λλ λ′ ′′= ⇒ = =  

sub into Eg (3.27) 

2

1/2

2 4

0

2 (1 )
4 4 2

(1 )
2

i i

i i

i e e cos i sin i

i

π π

ωλ λ

π π

ωλ

− = ⇒ = ±

 
= = = + = + 
 

∴ = ± +

∵

ω
   

ν ν

 

ν
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(3.26)⇒  

0 0

0

(1 ) (1 )
2 2

( ) ( )
2 2 2 2

( , )

             

i t i y i yyi t i t

y i t y y i t y

u y t U e e U Ae Be e

U Ae e Be e

ω ωωλω ω

ω ω ω ωω ω

+ + − +

+ − −

 
= = + 

  
 

= + 
  

ν ν

ν ν ν ν

 

 

 

 

Also 0 0(0, ) 1i t i tu t U e BU e Bω ω= = ⇒ =  

Thus  

0

( )
2 2( , )

wy i t y
u y t U e e

ω ω− −
= ν ν  

0 2 ( ) ( )
2 2

y
U e cos t y i sin t y

ω ω ωω ω
−  

= − + − 
 

ν  
ν ν

 

Since we have only the real part,∴ 

0 2( , ) ( )
2

y
u y t U e cos t y

ω ωω
−

= −ν

ν
                         (3.28) 

Decaying Amplitude    
The velocity distribution is 
 

2
wyη =
ν

0

u
U

①③

②
④

④

①

②

③

2:π

:π
3: 2
π

: 2π
1

ωt

1.01.0−

6
00

0
 

2as ,
but u( , t) 0, A 0

y
y e

ω 
→∞ →∞ 

 ∞ = ∴ = 

ν
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Remarks: 
(1) This is similar to the temp. varies on the earth every day due to the sunrise 

and sunset.. 
(or, if we take u as the average temp. of a day, the distribution will similar to 
the  temp. on the earth every year due to the seasons.) 

(2)  

2
w y

e
−

ν

2wave length
frequency

π
= 

One wave length

 
  

1 / 22 22 ( ) depth of penetration

2

π νλ π
ωω

ν

= = ≡  
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Z-direction is infinite , but the distributin of V in
x-span is finite, therefore it will have a stagnation
pt on the plate, where we take as the origin of the 
coord. system. Our objective is to understand the 
flowfield near the stagnation pt!

 
 
 
 
 
 
  
 

3.3 steady, 2-D stagnathion flow (Hiemenz Flow) 
V

y

x

? ?

 
 

For 2-D, steady, incompressible. Flow with constantµ  , the G..E’S are: 

2 2

2 2

2 2

2 2

0

( )

( )

u u
x y

u u p u uu v
x y x x y

v v p v vu v
x y y x y

ρ µ

ρ µ

∂ ∂
+ =

∂ ∂
  ∂ ∂ ∂ ∂ ∂ + = − + +  ∂ ∂ ∂ ∂ ∂ 
  ∂ ∂ ∂ ∂ ∂ + = − + +  ∂ ∂ ∂ ∂ ∂ 

                  (3.29) 

if we consider a particular solution, say 





−=
=

ayv
axu

                                             (3.30) 

 
Continuity equation: a-a = 0  (√ ) 

y-momentum: [ ] 2 210 ( )( ) (x)
2

pay a P a y f
y

ρ ∂ −
+ − − = − ⇒ = +

∂
 

x-momentum: [ ] 2 21( )( ) 0 ( )
2

pax a P a x g u
x

ρ ∂ −
+ = − ⇒ = +

∂
   

constxayaP +−
−

=∴ 2222

2
1

2
1  

2v       2u      

or          .)(
2
1 22 constPvuP =≡++  

This is the Bernoulli equation, that is the given velocity distribution is for a inviscid 
flow. The streamline is given as: 

0V d s× =    (parallel each other) 
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0 ( ) 0
0

i j k
u v udy vdx k
dx dy

= − =      

⇒  dx dy
u v
=  ⇒  dx dy

ax ay
=
−

 ⇒  n x n y C= − +      

⇒  )n xy C= (  ⇒  constantxy =     family of hyperbalas 
 
Therefore, the streamline looks like: 

 
 
Remarks: 

(1) though the given velocity distribution satisfies the N-S equation, it can’t  
satisfy the no slip B.C’S. 
( @ 0, 0 but 0, except for 0y v u ax x= = = ≠ =  

(2) we , therefore , want to modify the u, v, such that it can satisfies the no slips 
boundary condition 

 
To modify v= -ay, let us assume a similar form of 

( )v f y= −                                           (3.31a) 
To satisfy the continuity equation, 

' '0 ( ) ( )u v u f y u xf y
x y x
∂ ∂ ∂

+ = ⇒ − ⇒ =
∂ ∂ ∂

                       

or 

' ( )u xf y=                                           (3.31b) 
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In order to satisfy the no-slip B.C’S: 
 

'
0

0 (0) 0
y

u f
=
= ⇒ =    

0
0 (0) 0

y
v f

=
= ⇒ =                           (3.32a, b) 

 
As the ∞→y , we want u back to the inviscid case, that is u = ax, thus 

' ( )f a∞ =                                            (3.32c) 

In the inviscid flow , the pressure is 2 2 2 2
0

1
2

p p a x a yρ  = − +   

Now, we modify the pressure as 

2 2 2
0

1 ( )
2

P P a x a F yρ  = − +                              (3.33) 

Not that u, v, p are replaced by two unknown function f (y) and F(y). However, we 
still have two momentum equations. the problem is closure. 
 
Sub. u, v, and p into the x-momentum equation, we have 

2' '' 2 '''f ff a f− = +ν                            (3.34) 

Sub u, v p∆  into y-momentum equation: 

' 2 ' ''1
2

ff a F f⇒ = -ν   

or ' '' '
2

2F f ff
a

 = + ν     

or 
2

'
2

2
2
fF f const

a
 

= + + 
 
ν                            (3.35)                

In summary, we have 

2' 2''''' 0f ff f a+ − + =ν             (3.34) 

2
'

2

2
2
fF f const

a
 

= + + 
 
ν              (3.35) 

with B.C’S. ○1  0)0( =f  ○2 ' (0 ) 0f =  ○3 ' ( )f a∞ =  
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η

' u
U

φ =

vφ ∼

1.0

with eq.(3.34) and B.C’S, we can solve the unknown function f. We want to use 
similarity method, introduce 

yη α= ,   ( ) ( )f y Aφ η=     
then  

23 2 2 2 ' 2'''''' 0( )( )A aA A Aα φ φ α φφ α + =+ −ν       

2 2 ''A α φφ  

To let the equation non-dimensionalized, i.e., let the coefficients of the above equation 
become all identically equal to unity , we put  

3 2A aα =ν   and  2 2 2A aα =     

∴ A a= ν    and   α =
a

ν
    

Thus, the new independent variables are 
a yη =
ν

 , ( ) ( )F y aφ η= ν                          (3.36) 

The G.E’s become 
2

' '

'''' '' 1 0
:
(0) 0, (0) 0, ( ) 1

with s
φ φφ φ

φ φ φ

+ − + =

= = ∞ =

'

              

 B.C

               

                             (3.37) 

⇐Hiemenz Flow 
also get 

2 '( 2 )F
a
φ φ= +

ν                                      (3.38) 

Eqn (3.37) is solved by Hiemenz, and tabulate as Table 5.1 in the p.p98 of schlichting. 
 

a yη =
ν

 φ  
d u
d U
φ
η
=  

0 
0.2 
： 
2.4 
： 
4.0 
： 
4.6 

0 
0.0233 
： 

1.7553 
： 

3.3521 
： 

3.9521 

0 
0.2266 
： 

0.9905 
： 

1.000 
： 

1.000 

( ' '
( ) 1 1 1

( )

fdd d f u ua fad d y a a x Ua ad y

φφ
η

= = = = = =
⋅ν

ν

νν

) 
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jV

h

x
y

d

Remarks: 
(1) As 9905.0/  ,4.2 == Uuη . We consider the corresponding distance from 

the wall as the boundary layerδ , therefore (      a y y
a

η η= =
ν

ν
) 

   2.4
a aδδ η= =
ν ν                               (3.39) 

Note also that δ  is independent of x. 
(The boundary-layer thickness is constant because the thinning due to 
stream acceleration exactly balances the thicknessing due to viscous 
dissipation) 

2U ax=1U ax=

δ

1x

y

 
(2) As x →∞ , v ay= −  & u →∞  for 0y ≠    

As y →∞  (or η →∞ ), u ax=  and v →∞  (∵φ →∞ ) 
That is the modified solution, though satisfies the no slip condition, still 
can’t satisfy the condition at infinite. We will see this problem in the 
“boundary layer theory”. 

 
(Localized solution) 

 
 
Corresponding problem: 

 
2-D or axis-symmetric stagnation jet: 

If jet fluid is the same as the surrounding fluid  
How about the flow field? How does it look like?        
How we specified the boundary condition? 
 
 
(The potential flow solution ayvaxu −==   , which is a ideal, theoretical flow 
case, will not be the outer solution of the present problem. We need to solve this 
problem by Numerical method.) 

Wrong, the sol satisfies the B.C at infinite. The 
sol. Match the inviscid flow solution when it is 
far away from walls. 
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2-D or axis-symmetric Spraying. 
 

jV

Liquid fuel

Air

x  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

How does the spray looked 
like? 
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θ

,ze w

,e vθ

Z

y

x

r

ω

uer ,ˆ

3.4 Flow over a rotating disk (White, 3-8.2, p. 163) 
 
Infinite plane disk rotating with angular velocityω  

Symmetric with respect to θ  0=
∂
∂

⇒
θ

 

 
 

Continuity: 1 ( ) ( ) 0ru w
r r z
∂ ∂

+ =
∂ ∂

    

r- Momentum: 
2 2 2

2 2

1 ( )u u v p u u uu w
r z r r r r r zρ

ν  ∂ ∂ ∂ ∂ ∂ ∂
+ − = − + + + ∂ ∂ ∂ ∂ ∂ ∂ 

  

θ -momentum: 
2 2

2 2( )v v v v v vu w u
r z r r r r z

 ∂ ∂ ∂ ∂ ∂
+ + = + + ∂ ∂ ∂ ∂ ∂ 

ν    

z- Momentum: 
2 2

2 2

1 1 ( )w w p w w wu w
r z z r r r zρ

 ∂ ∂ ∂ ∂ ∂ ∂
+ = − + + + ∂ ∂ ∂ ∂ ∂ ∂ 

ν    

4 equations, 4 unknowns       (√ ) 
 
How many B.C’s do we need? 
--- second order in wvu ,,  and 1st order in p; thus we need 7 boundary conditions. 
 
B.C.’s: 

(1) At z = 0, u = w = 0, v = rω        (3) 
p = 0 (a convenient constant)    (1) 

(2) At z =∞, u = v = 0          (2) 
w = ? ( 0≠w , because the fluid near the rotating disk will be 

pumped out, so we expected there are fluid coming 
from the top of the rotating disk.) 

 
Need one more boundary condition. 

(3) 0=
∂
∂

r
p  (so that p is bounded, otherwise p → ±∞ as r → ∞)  

(The flow would move in circular streamlines if the pressure 
increased radially to balance the inward centripetal acceleration.) 
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Compare inertial & viscous term in the r-momentum: 
2

2

u uu
r z
∂ ∂
∂ ∂
∼ν   

[ ]
12 2( )( ) ( ) / ( )O r O r δ δ  ⇒ ∼ ∼ νω ω νω   

ω
 

Therefore, we may non-dimensional z by the use ofδ . Introduce a new variable 
1

2( )z zζ
δ

= =
ω

ν
    (White: z*) 

Also, try to use separation variables method by assuming 
 

u = ω r F( ζ )   
v = ω r G( ζ )  

w = 
1

2( )ων H( ζ )←  function of z only since r & z are assumed separated 

p = ρν ω P( ζ )   ←  Since 0    is function of  onlyp p z
r
∂

= ∴
∂

) 

 The B.C.’s become: 
ζ= 0, F(0) = H(0) = P(0) = 0, G(0) = 1    (z = 0) 

ζ =∞, F(∞) = G(∞) = 0                  (z→∞) (3.40) 

( 0=
∂
∂

r
p  cancel one term in r-momentum equation!)          (3-185) 

The G.E.’s becomes 
Continuity:  2F + H' = 0 

r :     F2 － G 2 + HF ' = F '' 

θ :    2FG + HG '－G '' = 0 
z :    P ' + HH '－H '' = 0                                   (3.41a~d ) 

 (3-184) 
 
Equation (3.41a-c) with B.C. (3.40) is sufficient to solve F, H, and G the results can be 
applied to equation (3.41d) to solve P. 
 
For small value of z, such that ζ is small seek a solution in powers of ζ 

F = a0 +a1ζ + a2ζ 2 + a3ζ 3+ h.o.T   neglecting high order terms 

G = b0 +b1ζ +b2ζ 2 + b3ζ 3+ h.o.T 

H = c0 +c1ζ +c2ζ 2 + c3ζ 3+ h.o.T                  (3.42) 
 

(so that the effect of r and z are separated; 
u = vr; v = vq; w = vz) 
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Try to determine 0 3,a c……   (12 unknowns) 

From B.C’s on ζ = 0,  F = 0 ⇒  a0 = 0 
G = 1 ⇒  b0 = 1 
H = 0 ⇒  c0 = 0 

 
Apply the G.E. at ζ = 0, with F = H = 0 and G =1, we have 

Continuity:  0 + H '(0) = 0    ⇒  H '(0) = 0   ⇒  c1 = 0 

r:        0 – 1 + 0 = F ''(0) ⇒  F ''(0) = -1  ⇒  a2 = 
2
1

−  

θ:        0 + 0 - G ''(0) = 0 ⇒  G ''(0) = 0   ⇒  b2 = 0 

Now differentiate original equations ω.r.t. ζ 
'

' ' ' '

'

''

'' '''

' ' ' '' '''

2 0

2 2 0

2 2 0

F H

FF GG H F HF F

F G FG H G HG G

+ =

− + + − =

+ + + − =

                  (3.43a-c) 

 
Sub. (3.42) into (3.43) again for, ζ = 0, and use the previous results (i.e. a0 = 0, b0 = 0, 
c0 = 0, c1 = 0, a2 = -1/2, b2 = 0), we get 

2a1 + 2c2 = 0                                       

-2b1 – 6a3 = 0                                          

2a1 – 6b3 =0 (3.44 a-c) 

 

Differentiate Eq. (3.43a) again and evaluate at ζ = 0: 
2F '' + H ''' = 0 

(at ζ = 0, F '' = 2a2 = -1, H ''' = 3 4 30
6 24 ... 6c c c

ς
ς

=
+ + = ) 

⇒  -2 + 6c3 = 0 ⇒  
3
1

3 =c  

We have get 3+3+1=7 coefficients, therefore 5 unknowns left. However, we have 3 
equations (Eq 3.44a-c), thus, we can express 3 unknown (c2, a3, b3) in terms of the 
other 2 unknowns (a1, b1). From (3.44) we have 

C2 = -a1,  a3 = -b1/3,  b3 = a1/3 
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The solution thus become 

2 31
1

31
1

2 3
1

1 ....
2 3

1 ......
3
1 ......
3

bF a

aG b

H a

ζ ζ ζ

ζ ζ

ζ ζ

= − − +

= + + +

= − + +

                              (3.45) 

Two unknowns: 1a & 1b . Also note that Eq. (3.45) will not suitable for ζ→∞, 
because F, G, H will→∞ 
 
Now, let’s look at the equation. At ∞→ζ , where F(ζ ) = G(ζ )=0 is the known B.C.’s 

Continuity: '2 0F H+ =           ⇒  H '= 0 →  H (ζ ) = -C (∵w < 0 at ζ→∞) 

r :    F2 － G 2 + HF ' = F '' ⇒  HF ' = F '' 

θ :   2FG + HG '－G '' = 0   ⇒  HG '= G '' 

' ' ( ) ( )H c cF e F e F eζ ζ ζζ ζ− −∞ ⇒ ∝ ⇒ ∝∼  

' ' ( ) ( )c cHG e G e G eζ ζ ζζ ζ− −∞ ⇒ ∝ ⇒ ∝∼  

Thus, in the far away region, we seek solution of the form of  

F = A1e-cζ + A2e-2cζ +…… 

G = B1e-cζ + B2e-2cζ +……                               (3.46) 

H = – C + C1e-cζ + C2e-2cζ +……  
 
Sub (3.46) into the G.E.s 
Continuity: 

{2A1e-Cζ + O[e-2Cζ] + …} + {– CC1e-Cζ + O[e-2Cζ] +……} = 0 

⇒  e-Cζ:  2A1 – CC1 = 0   ⇒  C1 = 2A1/C                              

r-momentum: 

{A1e-Cζ + A2e-2Cζ}2 – { B1e-Cζ +…}2 + [– C + C1e-Cζ +…][–A1Ce-Cζ 

–2CA2e-2Cζ +…] = + A1C2 e-Cζ + 4C2A2C2 e-2Cζ +… 

⇒  e-2cζ:  A1
2 – B1

2 - CC1A1 + 2C2A2 – 4C2A2= 0           

⇒  A2 = –
2 2

1 1
2

(A +B )
2C

 

⇒
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θ -momentum 

B2 = 0   and    C2 = –
2 2

1 1
3

(A +B )
2C

                          

 
The solution near ζ→∞ is thus 

F = A1e-Cζ + (A1
2 +B1

2) / 2C2e-2Cζ +…… 

G = B1e-Cζ + O[e-3Cζ] +…… (3.47) 

H = – C + 12A
C

e-Cζ – 
2 2

1 1
3

(A +B )
2C

e-2Cζ +…… 

Unknowns: A1, B1, C 
 
By matching the “inner” solution for small ζ to an “outer” solution for large ζ. That is, 
take small value of ζ in Eq. (3.47a). Numerically, we finally obtain 

a1 = 0.51,   b1 = -0.616 
C= 0.886,   A1 = 0.934,   B1 = 1.208 

These values may not be unique, but they have been verified in laminar flow 
experiment. 

The velocity distribution is 

1

0.1

4

~G ν
wH −=−

uF ~

Z ωξ =
ν

 
Or , see Table 3.5 on page 166 of the book of White, “Viscous Fluid Flow”, 2nd ed. 
At ζ = 5.4, 0.01F G≈ ≈ . Therefore the boundary layer δ  is 

5.4 ≈  
ωδ
ν

⇒   5.4δ
ω

=
ν                     (3.48) (3-187) 

or  
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δ

Z

rv ω=

δ
u

see also Fig. 3-28 (White) 
- pumping outward near the disk by centrifugal action, replenished from above at 

constant (at Z→∞) downward velocity. 
 
Supplementary data for rotating disk: 
 

∵ H(∞) = -0.8838, thus 

vz (∞) = -0.8838 ων    (disk draw fluid toward it) 

The circumferential wall shear stress on the disk is  

θ

0
zθ

z

u
z

µτ
=

∂
=

∂
= 

' 3 3 (0) 0.6159  rG rρ ω ρ ω= −ν ν  

 
Remarks: 

(1) If we apply the above result, to find the torque required to turn a disk of radius r0 . 
them  

0

zθ0
(2 )

r
M r r drτ π= =∫ -0.967ρr0

4 3νω ; CM ≡ 52
0

2 3.87
1

2

M
Rerρω

−
≅ , Re = 

2
0 rω

ν
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The equation agrees well with experimental data for 53 10Re < ×  

For 53 10Re < × , the flow becomes turbulent. 

(2) If we stir tea in a cup; the flow pattern will be reversed. Thus these exists an 

inversed radial flow. 

(3) Rogers & Lance (1960) used a Runge-Kutta method to solve eqns (3.41), by 

defining 

Y1 = H, Y3 = F, Y5 = G 

Y2 = 'F ,       Y4 = 'G , Y6 = Р           

with I.C’s:  Y1(0) = Y3(0) = Y6(0) = 0 , Y5(0) = 1                      (3.40a) 
 

The two unknown conditions of Y2 (0) & Y4 (0) must be chosen to satisfy the end 

B.C.’s (3.40b). Namely 

Y3 → 0, Y5 → 0,  at ζ  → ∞. 

The fortrain statements for (3.41) are simply six statements, as described in p.165 

of White’s book. By numerical iteration, we can find the I.C.’s to be 

Y2 (0) = 'F (0) = 0.5102 
Y4 (0) = 'G (0) = -0.6159 

The numerical results agree well with those obtained by asymptotic expansion. 
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5

5−

φ

10
0u

u

12345
6

7

3.5 Flow in a channel (3-8.3 Jeffery-Hamel Flow in a Wedge-Shaped Region) 
 

α2φ φ

0u

  (sink)   convergent flow flow  (source) divergent 
 

○1 ○2 ○3                    ○4                         ○5 ○6 ○7               
The velocity distributions are 
Re = u0r /ν 

○1 : Re = 5000 
○2 : Re = 1342     convergent 
○3 : Re = 684  

 
○5 : Re = 684 
○6 : Re = 1342     divergent 
○7 : Re = 5000 
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3.6 Stream Function 
 
For a 2-D, constant density flow (incompressible flow) 

0=⋅∇ V  ⇒   0=
∂
∂

+
∂
∂

y
v

x
u  ⇒   u = 

y∂
∂ψ ; v = 

x∂
∂

−
ψ  (3.49) 

⇒   0)()(
22

=
∂∂

∂
−

∂∂
∂

=
∂
∂

−
∂
∂

+
∂
∂

∂
∂

yxyxxyyx
ψψψψ  

By introducing the stream function “ψ”, the continuity equation is automatically 
satisfied. (By introducing theψ , the independent variable & the governing equation 
are reduced by one, however, the order of the P.D.E. increases by one.) 
 
In 3-D flow, the eqn of streamline is  

0V d s× =  

Where kwjviuV ˆˆˆ ++= ,   ˆ?d s dxi dyj dzk= + +  

Thus  
u
dx  = 

v
dy  = 

w
dz  

or    
dx
dy = 

),,(
),,(

zyxu
zyxv ,  

dx
dz = 

),,(
),,(

zyxu
zyxw  

The stream functions will be 
ψ 1(x,y,z) = C1 = constant,    ψ 2(x,y,z) = C2 =constant 

V
1ψ∇

2ψ∇

y

z

x

const2 =ψ

const 1 =ψ

)line stream(

 

Since 21 ψψ ∇×∇  has the same direction as V , so we can say 

V  = k ( 21 ψψ ∇×∇ ) 

proportional constant 
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Or  

ҜV = 21 ψψ ∇×∇  

Since 

)( 21 ψψ ∇×∇⋅∇ = 0      (Mathematically) 

 ∴ ⋅∇ (ҜV ) = 0 

But for steady flow, we know 0)Vdiv( =ρ , so we can pick up Ҝ = ρ, then  

ρV  = 21 ψψ ∇×∇                                         (3.50) 

If the flow is constant density, we know 0)Vdiv( =ρ , so we can pick up Ҝ = 1, then 

V  = 21 ψψ ∇×∇                                           (3.51) 

Remarks: 

There are only a few exact solutions for N-S equation unless the physical 

problem and geometry is easy. The N-S equation may be simplified as Re >>1 or Re

→ ∞, where the exact solution may also be exist. In the next two chapters, we will 

consider the flow fluid when Re >>1 or Re → 0. 

 
 



Advanced Fluid Mechanics 

Chapter 4-1 

d
∞U

Chapter4 Very Slow Motion 
 
4.1 Equations of motion 
Consider a constant density flow, the equations of motion are: 
Continuity:  0=⋅∇ V

v
 

Momentum: VpVV
t
V vvv
v

2∇+−∇=







∇⋅+

∂
∂ρ  

Introduce the   characteristic velocity : U∞  
characteristic length  : d 
characteristic pressure : p0    

characteristic time    : t0                 

then the non-dimensional properties become 

∞
=

U
VV
v

v~
,  

d
rr
v

v =~ ,  
0

~
p
pp = ,  

0

~
t
tt =    

and    ▽ = 
rv∂
∂

 = 
rd ~

1
v∂
∂

 = 
d
∇~

 ⇒  ∇=∇ d~     

(The magnitude of “〜” order 1) 

Continuity:  0
~~ =⋅∇ V
v

 

(continuity equation is invarant for non-dimensionalization) 
Momentum: 

t
V

tU
d

~

~

0 ∂
∂

∞

v

 + VV
~~~ vv

∇⋅  = p
U
P ~ ~

2
0 ∇−
∞ρ

 + V
dU

~~
/

1 2 v∇
∞ µρ

 

If we denote: 

Reynolds No. = 
µ

ρ dU∞  

And pick up:  P0  = ρU∞
2  =  dynamic pressure                   

Equation becomes 

t
V

tU
d

~

~

0 ∂
∂

∞

v

 + VV
~~~ vv

∇⋅  = p~ ~∇−  + V
~~

Re
1 2 v∇  

unsteady part  convective part 

 
inertia forces                                             pressure 

forces 
viscous 
forces
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1) If  Re→∞ ⇒  
t
V

tU
d

~

~

0 ∂
∂

∞

v

 + VV
~~~ vv

∇⋅  = p~ ~∇−                     (4.1)       

2) If  Re→ 0 ⇒  0~ 2 =∇ V
v

                                       (4.2) 

Note that there is no balance term. We want to have a balance term. Multiply (4.11) 
by Re 

Re
t
V

tU
d

~

~

0 ∂
∂

∞

v

 + Re VV
~~~ vv

∇⋅  = p
U
P ~ ~

2
0 ∇−
∞

Re
ρ

 + V
~~ 2 v∇  

(0, as Re→0)                      
(i) The unsteady term coefficient: 

For a oscillation body flow, w = frequency of oscillation  

we can choose:  t0 = 
ω
1

 

the first coefficient:  

Re
0tU

d

∞
 = Re

∞U
dω

 → 0, as Re → 0 and ω is not very large 

Remark: ○1  if there is no body oscillation, we may pick t0 = U∞/d  
○2  For a highly oscillation body, the unsteady term can’t neglected. 
 

(ii) The pressure coefficient 

We want to pick up P0 such that Re
2

0

∞U

P

ρ
→ 1, and this term can be left to 

balance the viscous term. Therefore 

P0 = 
Re

2
∞Uρ

= 
µρ

ρ
/

2

dU
U

∞

∞ = 
d
U∞µ

 

And the momentum equation (4.1) become 

0 = p~ ~∇−  + V
~~ 2 v∇                                     (4.3) 

Summary:  For a steady, constant density, slow flow (Re→0) 

V
~~ v

∇ = 0 

0 = p~ ~∇−  + V
~~ 2 v∇  

Also name as: Slow flow, Creeping flow, or stokes′flow.  
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4.2 Slow flow past a sphere 
 
consider a steady, constant density flow with Re→0. 

Z
θa

rθu ru

∞U

 

 V
v

 = rreu v + θθ eu v + φφeu v     

0 

在 upstream 方向上無φ 方向之分量，故在 sphere 附近 φu 幾乎為零。但 θu 和 ru

則由 zeU ˆ∞ 變化而來，故不可忽略 

 
Mass:   divV

v
= 0 

⇒  





∂
∂

+
∂
∂ ) sin() sin(

sin
1 2

2 θθ
θ

θ
θ

urur
rr

r =0 

θ
ψ
∂
∂

         
r∂

∂
−

ψ
 

The streamfunction are takes such that the continuity equation is satisfied 
automatically. Thus  

r2sinθur = θ
ψ
∂
∂

,    rsinθuθ=
r∂

∂
−

ψ
 

or   ur = θ
ψ

θ ∂
∂

sin
1

2r
,   uθ=

rr ∂
∂

−
ψ

θsin
1

 (4.4) 

Momentum equation: 

0 = Vp
v2∇−∇− µ  

Since   V
v2∇  = grad (divV

v
) – cuel curlV

v
 

⇒    0 = p∇− -μcurl curlV
v

 

 

0=V
v

 on r = a 

0
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take curl on both side 

0 = 0 -μcurl curl curlV
v

 (4.5) 

Ω≡
v

 
 

Ω
v

= cuelV
v

 = 
θsin

1
2r

0

ˆ sinˆˆ

θ

φθ

φθ

θ

ruu
r

erere

r

r

∂
∂

∂
∂

∂
∂

 

= 
θsin

1
2r 














∂
∂

−
∂

∂
++

θ
θ θ

φθ
r

r
u

r
ru

eree
)(ˆ sin)0(ˆ)0(ˆ  

= 








∂
∂

−
∂
∂

+
θ

θ
θ

φ ru
r

u
ru

r
ê

    sub. Eqn (4.4)  

= 
r

eφˆ






∂
∂

∂
∂

−
∂
∂

−
∂
∂

+
∂
∂

− )
sin
1()

sin
1(

sin
1

2 θ
ψ

θθ
ψ

θ
ψ

θ rrrr
r

rr
 

= 
r

eφˆ













∂
∂

∂
∂

−
∂

∂
+

∂
∂−

−
∂
∂

− )
sin

1(1)11(
sinsin

1
22

2

2 θ
ψ

θθ
ψψ

θ
ψ

θ rrrrr
r

rr
 

= 












∂
∂

∂
∂

+
∂

∂−
)

sin
1(sin

sin
ˆ

22

2

θ
ψ

θθ
θψ

θ
φ

rrr
e

 

= Ω φê   

Where  Ω ≡
θsin

1
r

− Dψ  

D ≡ differential operator ≡ 2

2

r∂
∂

+ )
sin

1(sin
2 θθθ
θ

∂
∂

∂
∂

r
 

Then  

Curl Ω
v

 =
θsin

1
2r

Ω
∂
∂

∂
∂

∂
∂

00

ˆ sinˆˆ

φθ

θ φθ

r

ererer

 

=
θsin

1
2r 





∂
Ω∂

−
∂
Ω∂

r
erer θθ
ˆˆ  
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Finally, we can obtain 

curl curlΩ
v

 = 
θ

φ

sin
ˆ

r
e

D2ψ  

Eq. (4.5) ⇒  
D2ψ  = 0 

or         






∂

∂
2

2

r
+

2

2 )
sin

1(sin



∂
∂

∂
∂

θθθ
θ

r
ψ =0 (4.6) 

 

B.C’S in terms of ψ : (Recall ur = θ
ψ

θ ∂
∂

sin
1

2r
, uθ=

rr ∂
∂

−
ψ

θsin
1

) 

(i) On r = a: 

ur = 0 → 
θ
ψ
∂
∂

 = 0 

uθ= 0 → 
r∂

∂ψ
 = 0                                       (4.7a) 

 
(ii) Infinity condition 

∵ ∞V
v

 = U∞ zê = U∞[( cosθ) rê + (-sinθ) θê ] 

∴ ur = 
θ
ψ

θ ∂
∂

sin
1

2r
  → U∞cosθ   as r→∞                (4.8a) 

uθ= 
rr ∂

∂
−

ψ
θsin

1
  → －U∞sinθ  as r→∞              (4.8b)  

 
integrate (4.8a) and (4.8b), we obtain 

ψ  ~ U∞ 2

2r sin2θ   as r→∞                      (4.7b) 

 
Assume: ψ (r,θ) = f(r)sin2θ, then the B.C’S become 

(4.7a) r = a  → )(' af = f (a) = 0 

(4.7b) r→∞ → f (r) ~ U∞

2

2r   as r→∞   
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Sub. Into Eq. (4.6), we get 

0)2)(2()2( 22

2

22

2
2

22

2
=−−=−

r
f

dr
fd

rdr
df

rdr
d

 

Aside: 02

2
2

3

3
3

4

4
4 =++++ df

dr
dfcr

dr
fdbr

dr
fdar

dr
fdr  

we can assume solution to be the form of f = Arn,  

we will have 4 roots for n, n= 1, -1, 2, 4.   

∴     f = 
r
A

+ Br + Cr2 +Dr4                                       (4.9) 

B.C’S: 

(1)  f (r) ~
2

2rU∞   as r→∞ 

compare with (4.9), we observe that we need to take C = 
2
∞U

 and  D = 0  

to satisfy f (r) ~
2

2rU∞  for r →∞. ( The value of A, B are not important, 

since they are not the highest order term, and r2 >> r as r→∞) 
 
Eq. (4.9) ⇒  

f = 
r
A

 + Br +
2
∞U

r2                                        (4.10) 

 

(2) f (a) = 0 → 
a
A

+ Ba +
2
∞U

a2 = 0 

)(' af = 0 → － 2
A
a

+ B + U∞ a = 0 

A =
4
1 a3U∞ , B =

4
3

− aU∞  

∴   ψ (r,θ) = a2 U∞ sin2θ 



 +− 2)(

2
1)(

4
3)(

4
1

a
r

a
r

r
a

+ const           (4.11a) 

ur = U∞cosθ 



 +− 3)(

2
1)(

2
31

r
a

r
a

 

uθ= -U∞sinθ 



 −− 3)(

4
1)(

4
31

r
a

r
a

 (4.11 b, c) 

⇒
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The streamlines are: 

πθ = 0=θ0=ψ
5=ψ

10=ψ

5−=ψ
10−=ψ

 

Remark: 

(1) The streamlines possess perfect forward – and – backward symmetry: there is 

no wake. It is the role of the convective acceleration terms, here neglected, to 

provide the strong flow asymmetry typical of higher Reynolds number flows. 

(2) The local velocity is everywhere retarded from its freestream value: there is 

no faster region such as occurs in potential flow. 

(3) The effect of the sphere extent to enormous distance: at r = 10a, the velocity 

are still 10 percent below their freestream values. 

(4) The streamlines and velocity are entirely independent of the fluid viscosity. 

 

The pressure distribution is 

0 = -▽p -μcurlΩ
v

 

or    
r
p
∂
∂

= －μ
θθ ∂
Ω∂

sin
1

2r
 ; 

θ∂
∂p

r
1

=－
θθ ∂
Ω∂

sin
1

r
 

 

integrate the eqns with the known value of Ω, we finally obtain 

P = P∞－
2
3 aμU∞ 2

cos
r
θ

 (4.12) 

The shear stress in the fluid is 

θτ r =μ(
r

uu
r

r
∂
∂

+
∂
∂ θ
θ

1
) = 

r
U θµ sin

− 



 +− 3)(

4
5)(

4
31

r
a

r
a

 (4.13) 
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The drag force on the sphere is thus 

D = － ∫ =
π

θ θτ
0

sinarr dA － ∫ =
π

θ
0

cosarp dA 

dA = 2πa2 sinθdθ 

θ

θ

θ

θcosp

p
a

θτ r θτ θ sinr

 

∴ D = 3πμaU∞ 



 +∫ ∫

π π
θθθθθ

0 0
23 sincossin dd  

4/3  2/3 

= 4πμa U∞ + 2πμa U∞ 

due to friction    due to pressure force 

or  D = 6πμaU∞    “ Stoke’s Formula “ (4.14) 

Define:  Re = 
ν

aU 2∞  

Then  CD = 
) ( 22

2
1 aU

D
πρ ∞

 = 
Re
24

 (4.15) 

 

dA = 2π(a sinθ)(a dθ) 
= 2πa2 sinθdθ 
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Remarks: 

(1) Stokes formula : D=6πμa U∞ provides a method to determine the viscosity 

of a fluid by observing the terminal velocity ∞U of a small falling ball of 

radius a. 

(2) Stokes formula valid only for Re<1. For Re≈ 20. These will have separated – 

flow on the near surface. 

(3) For a slow flow, the velocity is not necessarily very small. It could be a very 

small particle (a<<1) with a high velocity and 

Re = 
ν

aU∞  → 0. 

(4) Compare the stokes flow and a potential flow around a fixed sphere: 

 
(Stokes) (Potential) 

(Both fore – and – aft symmetric) (Fig. 3-35 White) 

The streamline are similar, except that stokes streamlines are displaced 

further by the body. However, for a sphere moving through a quient fluid. 

 
 

 

Drag the entire surrounding fluid 
with it 

Circulating streamline, indicating 
that it is merely pushing fluid out 
of the way 
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(5) For Re>1. Oseen use perturbation method and obtain a modified formula for 

CD. 

CD = 
Re

24
(1+

16
3

Re)      (valid for Re < 3~5)    (4.16) 

Other curve – fitting formula are, for example, 

CD ≅  
Re

24
+

Re1
6

+
+ 0.4    (0 ≤ Re≤  2×105 )      (4.17) 

 

 
Fig. 3-38 (a) Cylinder data 
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4.3 The Hydrodynamic Theory of Lubrication (White 3-9.7, p.187-190) 
 
Lubrication between journals and bearings are achieved by filly a thin film of oil 
between then. 

tyeccentricie  ,

 
For the sake of simplification, we take a model of 

y h1h
2h

x
l

block fixed

 wallmoving ,U

 
Assume: ○1  h << L 

○2  the sliding surface are very large in z-direction, such that z∂
∂ =0, w = 0 

○3  steady state 
 
The G..E’s become 

x
u
∂
∂

+
y
v
∂
∂

=0 

ρ(u
x
u
∂
∂

+v
y
u
∂
∂

) = 
x
p
∂
∂

− +μ( 2

2

x
u

∂

∂
+ 2

2

y
u

∂

∂
)   (4.18) 

ρ(u
x
v
∂
∂

+v
y
v
∂
∂

) = 
y
p
∂
∂

− +μ( 2

2

x
v

∂

∂
+ 2

2

y
v

∂

∂
) 
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Since v << u, the y-momentum equation can be totally neglected, that is  

0≅
∂
∂

y
p

 ∴ p = p(x) 

The x-momentum, reduces to 

ρu
x
u
∂
∂

 = 
x
p
∂
∂

− +μ( 2

2

x
u

∂

∂
+ 2

2

y
u

∂

∂
) 

(can be neglected compared with 2

2

y
u

∂
∂ ) 

Note that ○1  u
x
u
∂
∂  is not zero because the gap width is varied. 

○2  there are two characteristic length h, L in x- and y-directions, thus, the 
dimensionless parameter must be x = x/L, y =y/h to let the parameters 
of order 0(1). (Not the same as flow past a sphere where char. Length is 
diameter d only.) 

 
Compare the order of viscous & inertia forces 

force viscous
force Inertia

= 

2

2

y
u
x
uu

∂

∂
∂
∂

µ

ρ
 = 



















⋅

⋅⋅

2h
U

L
UU

µ

ρ
 = [

µ
ρUL

] [(
L
h

)2] 

≡ R* (reduced Reynolds No.) 
 
Remark: 

○1  ∵ h <<L, the R* is generally small even when Re (=ρUL/μ) is large. Thus 

the Inertia force term can be neglected approximately. 

○2  For example, U = 10 m/s, L = 4 cm 

ν = 7×10-4 m2/s, h = 0.1 mm 

Re = 570    but R* = 0.004 only 

 
The x-momentum equation thus becomes 

dx
dp

=μ 2

2

y
u

∂

∂
    (4.19) 
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B.C’s: 
○1  y =0, u =U 
○2  y =h, u = 0 
○3  x = 0, p = p0 
○4  x = L, p = p0 

 
 

Note that dp/dx here is no longer constant (such as the couette flow between two 

parallel walls), it must satisfy the pressure P0 at both ends. The dp/dx must be 

determined in such a way as to satisfy the continuity equation in every section of the 

form 

Q = ∫ (udy + vdx) = ∫
)(

0
xh

udy = const  (4.20) 

The solution of Eq. (4.19) with given B.C’s is 

u = U(1－
h
y

) － )1()(
2

2

h
y

h
y

dx
dph

−
µ

 (4.21) 

Here, dp/dx is determined by sub. (4.21) into (4.20), as  

Q = 
2

Uh
－ )(

12

3

dx
dph

µ
 

Or  

dx
dp

= 12μ( 22h
U

－ 3h
Q

)  (4.22) 

 
integrate with B.C (p = p0 at x=0 ), we have 

p = p0 + 6μU ∫
x

h
dx

0 2 －12μQ ∫
x

h
dx

0 3     (4.23) 

 
≡ b1(x)   ≡ b2(x) 

Inserting B.C of p =p0 at x = L, we get 

Q = 
2
1

U
)(
)(

2

1
Lb
Lb

= 
2
1

UH     (4.24) 

≡ characteristic thickness ≡H 
 

This is an assumed assumption for the model. For a 
certain segment in lubrication fluid, the pressure is 
not the same on both ends 
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We may conclude the procedure of solution as follows: 

(1) Known wedge shape h(x) 

(2) Obtain b1(L) & b2(L), as well as H & Q 

(3) The pressure distribution (4.23) can be rewritten as 

p(x) = p0 + 6μUb1(x) －12μQb2(x)  (4.25) 

and is readily obtained. 

(4) The dp/dx, Eq. (4.22) can be written and calculated as 

dx
dp

= 2
6
h

Uµ
(1－

h
H

)       (4.26) 

(5) Knowing dp/dx, the velocity distribution can be found from Eq. (4.21) 

 
Remark: 

(1) pmax or pmin occurs where h =H. 

(2) For a straight wedge with h1 & h2 at both ends, we get 

p(x) = p0 + 6μU 2
21

2
2

2
1

))((
h

hhhh
hh

L −−

−
 

 

 

2
1

0

/ hUL
pp

µ
−

1

2

3

0 5.0 1

8.0

7.0

5.0

4.0

3.0
1

2 =h
h

exit. near the occurs andhigher  become

pressuremax   thedecrease  as 
1

2
h

h
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atm 250 the

,5.0with 

 example, above For the

max

1
2

=

=

p
h

h

 
 

(3) Taking from F.M. White text: 

”Recall that stokes flow, being linear, are reversible. If we reverse the 

wall in the figure to the left, that is, U<0, then the pressure change is 

negative. The fluid will not actually develop a large negative pressure but 

rather will cavitate and or a vapor void in the gap, as is well shown in the 

G.I. Taylor film ”Low Reynolds number Hydrodynamics. ” 

”Thus flow into an expanding narrow gap may not generally bear much 

load or provide good lubrication. The effect is unavoidable in a rotating 

journal bearing, where the gap contracts and then expends, and partial 

cavitation often occurs. ” 

(4) For the case of bearing with finite width in z-direction, it was found that the 

decrease in thrust supported by such a bearing is very considerable due to 

the side wide decrease in pressure. 

(5) With large U and high temperature (low viscosity), the R* are nearly or 

exceeding unity. The result shown above needs to be modified since the 

inertia term u x
u
∂
∂ must be taken into account. As U is too high, turbulent flow 

may occur.  
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Chapter5 Boundary Layer Theory 
 
5.1 The Boundary Layer Equations 
 

From the first beginning, we are interested in the phenomena of a flow in high Re. 

In this type of flow, Re =            >>1, the inertia force will dominant almost 

the flow field, except for the region very near the wall, where the effect of viscous 

force are not negligible. 

In order to investigate the governing equation and the thickness of the boundary 

layer, we use the dimensionless analysis. Introduce the boundary layer thicknessδ

(not known yet! waiting for being investigated. All the assumption is only Re >>1 ). 

And non-dimensionalization 

u* =
U
u

,  v* =
V
v

,  y* =
δ
y

,  x* =
L
x

,  p* = 2U
p

ρ
−

,  t* =
UL

t
/

 

so that u*, v*, y*,……etc are all 0(1). 

(1) The continuity equation becomes 

(
L
U

) *

*

x
u
∂
∂

+ (
δ
V

) *

*

y
v
∂
∂

=0 

0(1) 0(1) 

To keep the equation unchanged, it must be 

L
U

~
δ
V

, or 
U
V

~ 0(
l

δ
) 

i.e. from the continuity equation, we get a relation between V/U andδ/L 

(2) Sub. Into x-momentum equation of the N-S equation: 

*

*

t
u
∂

∂
+ u*

*

*

x
u
∂
∂

+ 
U
V

δ
l

v* 
*

*

y
u
∂

∂
 = － *

*

x
p
∂
∂

+
Ul
ν

2*

*2

x

u

∂

∂
+

2

ν

δU
l

2*

*2

y

u

∂

∂
 

 ○1  ○2  ○3  

Inertia force 

Viscous force



Advanced Fluid Mechanics 
 

Chapter 5-2 
 

all the '' * '' terms are 0(1), we need only to consider the 3 coefficients above. 

○1  = 
U
V

δ
l

 ~ 0(1) from continuity equation 

○2  = 
Ul
ν

= 
Re

1
 → 0 (∵ Re >>1), therefore, this term can be dropped out 

compared with other) 

○3  
2

ν

δU
l

= ?  In order to keep this term (otherwise, all the viscous term 

disappear, it becomes the inviscid flow. This is the flow outside the boundary 

layer, not what we want.) It should be also order of 1. So  

2

ν

δU
l

~ 0(1) → δ~
U
lν

~
U

xν
 

that is from dimensionless analysis, we already have a ideal about the 

boundary layer thickness. 

δ~
U

xν
 

(3) Sub. Into y-momentum equation, we have 

*

*

t
v
∂

∂
+ u* 

*

*

x
v
∂

∂
+ (

U
V

)(
δ
l

)v* 
*

*

y
v
∂

∂
= －

V
U

δ
l

*

*

y
p
∂

∂
+

Ul
ν

2*

*2

x

u

∂

∂
+

2

ν

δU
l

2*

*2

y

u

∂

∂
 

 ○1  ○2  ○3  ○4  

where ○1  = 
U
V

δ
l

 ~ 0(1)  (continuity equation)  (o.k.) 

○3  = 
Ul
ν

 = 
Re

1
 → 0  (∵ Re >>1) can be neglected 

○4  
2

ν

δU
l

 = 
Re

1
(
δ
l

)2  ~ 0(1) from the result of x-momentum equation 

○2  －
V
U

δ
l

 >> 0(1) , so that we can see that this term are larger than 

other terms, the y-momentum equation can be written contained only 

dominant term as y
p
∂

∂ = 0 
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i.e. we can conclude p = p(x) only. 

So we conclude: 

For a flow with Re >>1, the flow very near the wall is governed by the equation 

(incompressible flow) 

x
u
∂
∂

+
y
v
∂
∂

 = 0    (5.1) 

t
u
∂
∂

+ u
x
u
∂
∂

+ v
y
u
∂
∂

 = －
ρ
1

dx
dp

+ν 2

2

y
u

∂

∂
 

and y
p
∂
∂

= 0. This equation is called”boundary layer equation” 

 

Remark: 

Compare the Navier-stokes equation and the boundary layer equation, and explain 

why the latter is easier to be solved numerically? 

(Ans:)  For simplicity, let’s consider the incompressible flow as an example: 

Navier-stokes equation: 

x
u
∂
∂

+
y
v
∂
∂

= 0 

t
u
∂
∂

+ u
x
u
∂
∂

+ v
y
u
∂
∂

 = －
ρ
1

dx
dp

+ν( 2

2

2

2

y
u

x
u

∂

∂
+

∂

∂
) 

t
v
∂
∂

+ u
x
v
∂
∂

+ v
y
v
∂
∂

 = －
ρ
1

y
p
∂
∂

+ν( 2

2

2

2

y
v

x
v

∂

∂
+

∂

∂
) 

Boundary layer equation: 

x
u
∂
∂

+
y
v
∂
∂

=0 

t
u
∂
∂

+ u
x
u
∂
∂

+ v
y
u
∂
∂

 = －
ρ
1

x
p
∂
∂

+ν 2

2

y
u

∂

∂
 

y
p
∂

∂ = 0 
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δ

There are many things to be noticed: 

(1) Continuity equation is not affected by the consideration of Reynolds number. 

(2) p=pe(x) in Boundary-layer equation, and is determined by the Bernoulli equation 

outside the boundary layer.. 

dx
dpe = －ρUe

dx
dUe     (5.2) 

where x is the coordinate parallel to the wall. 

(3) The equation becomes parabolic in B-L theory, with x as the marching variable. 

In computer, parabolic equation is easier to solve than the elliptic equation, 

which the N-S equation belongs to. 

(4) Boundary conditions: 

In B-L equation 

(i) 
2

2

y
v

∂

∂ , 
x
v
∂
∂

, 
2

2

x
v

∂

∂  have been discarded, only 
y
v
∂
∂ left. Therefore, we need 

only one boundary condition of v on y-direction. The obvious condition to 

retain is no slip: v = 0 at y=o. 

(ii) 
2

2

x
u

∂

∂  has been discarded. Therefore, one condition of u in x-direction (to 

satisfy
x
u
∂
∂

) is sufficient. The best choice is normally the inlet plane, and the 

u in the exit plane will yield the correct value without our specifying them. 

(iii) Boundary condition of u on y has no change. There are two conditions to 

satisfy
2

2

y
u

∂

∂ .  

Namely   u=0   as y = 0 

 
y
u
∂
∂

=0 as y =δ 

 

U∞
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Steady state 

x
u
∂
∂

+
y
v
∂
∂

=0 

u
x
u
∂
∂

+ v
y
u
∂
∂

 = －
ρ
1

x
p
∂
∂

+ν 2

2

y
u

∂

∂
 

0 =－
y
p
∂

∂  → P=Pe(x) 

B.C’s  

 u(x, y = 0) = 0 

 v (x, y = 0) = 0 

 u(x, y =δ) = Ue    ←  

 v(x, y =∞) = Ue 

(not the same as U∞) 

inviscid 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

U∞ 

∞

This condition must match the 
inner limit of the outer (inviscid) 
flow 
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5.2 Flat plate case (infinite far) 
 
inviscid 

 

Ue = U∞ = constant;  pe = p∞ = constant 

Known the inviscid properties, we next go to the boundary layer problem. 

x
u
∂
∂ +

y
u
∂
∂ =0 

u
x
u
∂
∂ +v

y
u
∂
∂ =ν 2

2

y
u

∂

∂  

: y= 0  u = 0 
 v = 0 

y=∞ u = u∞ →(since here, we stand in the Boundary layer. We can see 
only B.C, so the edge of the B.C seen ∞ for me.) 

Introduce stream function 

u = 
y∂

∂ψ
, v = 

x∂
∂

−
ψ

 

the continuity equation can be satisfied automatically. Sub into momentum equation , 

we can get one depended variable → mess equation. (hard to be solved) 

Similarity solution: 

Introduce (try) 

η = α)(
ν

xU
x
y ∞  

find α, so that a single variable differential equation is obtained in terms ofηonly. 

Can we determine a similarity variable 

η=η(x, y),  u = ũ (η) 

so that we can reduce a PDE → ODE. Assume 

U∞ 

∞
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0=ψ

η= α)(
ν

xU
x
y ∞  → α=1/2 

 Dimension of length:  x, y, 
∞U

ν
 

Dimensionless of length:  ỹ =
∞U

y
ν

 = 
ν

yU∞ , x~  = 
ν

xU∞  

∞U
U

= fn(η) = 'f (η) 

y∂
∂ψ

=U∞
'f (η) 

y∂
∂

∂
∂ η
η
ψ

=U∞
'f (η) 

µ
ψ
∂
∂

(
ν
∞U

)1/2

2
1

1
x

= U∞
'f (η) 

µ
ψ
∂
∂

= U∞(
∞U

ν )1/2 x1/2 'f (η) 

ψ = U∞(
∞U

ν )1/2 x1/2 f (η) + const 

∴ η= α)(
ν

xU
x
y ∞  

 ψ = U∞(
∞U

ν )1/2 x1/2 f (η) 

u =
y∂

∂ψ
=U∞

'f (η) 

v =
x∂

∂
−

ψ
= -U∞(

∞U
ν )1/2





2

1
2

1
x

f (η) + x1/2 



∂
∂

xd
df η
η

 

x∂
∂η = (

∞U
ν )1/2









−

2
12

1
x
y

x
=

x2
η

−  

v = -U∞(
∞U

ν )1/2











−

2
1

2
1

22

'

x
f

x
f η

 

anticipate f (η) as a dimensionless stream 

function. 

η=0 so thatψ =0 represent the body 
shape(∵along body (y=0)→η=0, but 
f(0)=0 from B.C.) 
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v = -U∞(
∞U

ν )1/2

2
1

2
1
x

[ f-η 'f ] 

Sub. Into equation, we finally get 

  2 '''f +f ''f = 0 

B.C.  'f (0) = 0 (
∞U

u
= 'f (η) = 0 at y = 0 orη= 0) 

  f (0) = 0 (
∞U

v
= 0 atη= 0) 

  'f (∞) = 1 (y→∞,  u = U∞) (5.3) 

This is called”Blasius Problem” 

 

Blasius Equation: 

η=
ν

xU
x
y ∞ =

∞U
x
y

ν
 

ψ = U∞(
∞U
xν )1/2 f (η) 

∞U
u

= 'f (η),   
∞U

ν
=

xU∞

ν

2
1

(η 'f － f ) 

Sub. into the momentum equation:  u
x
u
∂
∂ +v

y
u
∂
∂ =ν 2

2

y
u

∂

∂  

x
U

u

∂

∂
∞

)(
= )(

∞U
u

d
d
η dx

dη
= ''f (

∞

−

U
xx

y

ν
2
1

) = - ''f
x2
η

 

y
U

u

∂

∂
∞

)(
= )(

∞U
u

d
d
η dy

dη
= ''f (

∞U
xν

1
) 

2

2 )(

y
U

u

∂

∂
∞ = '''f (

∞U
xν
1

) 
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⇒   2 '''f + f ''f = 0  ”Blasius equation” 

B.C’S:  ○1  f(0)=0 

○2 'f (0)=0 

○3 'f (∞)=0 

 

0

2.0

4.0

6.0

8.0

0.1

2.1
∞

= U
uf )(' η

1 2 3 4 5 6 70

∞

=

U
x

y
ν

η )136.( p

gSchlichtin H. of p.139on  7.4 Tableor  7.7.Fig

 white)of p.236on  6-4 Fig.  4.1 Table(or 

8

 

Boundary Layer thickness: 

Engineering Argumemt: y =δwhen 
∞U

u =0.99 from Blasius table, we find 'f (η) 

=0.99 whenη=5. 

 ∴ 5 =η = 

∞U
x

y
ν

 = 

∞U
xν

δ
 

 ∴
x
δ

 = 

ν

xU∞

5
 = 

xRe
5

 

 or δ=5
∞U
xν

    (5.4) 

Solve Blasius equation by series express  

f = A0 +A1η+A2 2

2η +…. 

→ or using Runge-Kutta numerical method to 
solve it. 
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Surface friction: 

 τ=μ
y
u
∂
∂

 

 τw =μ(
y
u
∂
∂ )y=0 

 ∵ u = U∞
'f (η) 

 
y
u
∂
∂

= U∞
''f (η)

y∂
∂η

= U∞
''f (η)

∞U
νx

1
 

 
0=∂

∂

yy
u

=

∞

∞

U
x

fU
ν

)0(''2
 

 ∴τw =
xU

fU

∞

∞

ν

)0(''2µ
 

 Cf = 2
2
1

∞U
w

ρ
τ

 = 

ν

xU
f

∞

)0(2 ''
 = 

x

f
Re

)0(2 ''
 

Since 

 ''f (0) = 0.332 

∴ Cf = 
xRe

644.0
     (5.5a) 

 τw = 0.332μU∞(
x

U
ν

∞ )1/2    (5.5b) 

The Drag on the flat plate is 

 D = ∫
L
0

τw(x)dx  (for unit depth) 

 = 0.644 U∞ ∞LUµρ      (5.6a) 

And for a plate wetted on both side 

 'D = 2D = 1.328 U∞ ∞LUµρ     (5.6b) 
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As Remarked on White book, the boundary-layer approximation is not realized until 

Re≥ 1000. For ReL (= UL/ν)≤ 1 , the Oseen theory is valid. In the Range of 

1<ReL<1000, the correction CD is given as 

 CD≈
LRe

328.1
+

LRe
3.2

 

 

o
o

o o
oo
o o

o o
o

ooo o
o
o
oo
o
o

o

fC log

xRe log

flow turbulence

transition

flowLaminar 

 

 

 

(p.238 of White)
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510 610Re ≈x

Laminar transition turbulent

 

The displacement thicknessδ1 is defined as 

 δ1 = ∫
∞

=0y
(1-

∞U
u

)dy 

 = ∫
∞

=
∞

0ηU
xν

[1- 'f (η)]dη 

 = 
∞U
xν

[η1- f (η1)] whereη1 denotes a point outside the B.L  

(η1>5) 

 

Takeη1 = 7,  f (7) = 5.27926 

η1 = 8,  f (8) = 6.27923 

Therefore 

 δ1 = 1.7208
∞U
xν

 (displacement thickness)  (5.7) 

.The momentum thicknessδ2 is defined as  

 δ2 = ∫
∞

∞
0 U

u
 (1-

∞U
u

)dy 

= 
∞U
xν
∫
∞

0
'f (1- 'f ) dη 

or 

→η1－f (η1)≅ 1.7208 
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 δ2 = 0.664
∞U
xν

      (5.8) 

0 1

y

∞
−

U
u1

)1(
∞∞

−
U

u
U

u

∞U
u  :area shaded

1δ=

2δ=
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5.3 Similarity Solutions 
 

For the B.L. equation with pressure gradient. i.e.  

x
u
∂
∂

+
y
v
∂
∂

=0 

u
x
u
∂
∂

+ v
y
u
∂
∂

=Ue
dx

dUe +ν 2

2

y
u

∂

∂
 

Do we always have similarity solution? (P.D.E → O.D.E) 

Nondimensionalized by: 

U=
∞U

u
,  V=

∞U
v Re

,  Ue=
∞U

ue  

X=
L
x

,  Y=
L

y Re
,  Re =

ν

LU∞  

Then the equations become 

X
U
∂
∂

+
Y
V
∂
∂

=0 

U
X
U
∂
∂

+V
Y
U
∂
∂

= Ue
dX

dUe + 2

2

Y
U

∂

∂
 (5.9) 

With B.C’s 

U(X, 0) = 0,  V(Y, 0) = 0,  U(X, ∞) = Ue(X) 

The continuity equation is satisfied by the introducing of stream function 

U =
Y∂

∂ψ
,  V =

X∂
∂

−
ψ

 

And also introduce 

η=
)(Xg

Y
 

ζ = X 

 

 

← g(X) is what we want to find to get the similarity 
solution. 

C.f. for the zero-pressure gradient flow (Blasius Flow) 

η=
ν

xU
x
y ∞ =

X
Y
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That is we transform the coordinate system (X, Y)→(ζ,η). 

(Note: later, we will let the variables depend only onη, but not ζ, such that the 

Non-dimensional velocity profile is independent of the ζ (or X), and the solution is 

then call ”similar ” solution.) 

And  
eU

U
=

η
ης

∂
∂ ),(f

  (Later, we hope f (ζ,η)→ f (η) ! ) 

=
eU

1
Y∂

∂ ),( ηςψ
=

eU
1

Y∂
∂

∂
∂ η
η
ψ

=
eU

1
)(

1
ςη

ψ
g∂

∂
 

→ 
η
ψ
∂
∂

=Ue(ζ) g(ζ)
η∂
∂f

 

or ψ(ζ,η) = Ue(ζ) g(ζ) f (ζ,η)     (5.10) 

 U(ζ,η) =
Y∂

∂ψ
=

Y∂
∂

∂
∂ η
η
ψ

= Ue(ζ) g(ζ)
η∂
∂f

)(
1
ςg

⋅ = Ue(ζ)
η∂
∂f

 

 V(ζ,η)=
X∂
∂

−
ψ

= -



ςd

d
(Ue g) f + (Ue g) [

η∂
∂f

X∂
∂η

+
ς∂
∂f





∂
∂ ]
X
ς

  

=1 

 (
X∂
∂η

= 2

'

g
Yg

− =
g
g

g
Y '

− =
g
g '

η− ) 

'g =
ς
ς

d
dg )(

 

= -  (Ue g ')  f + (Ue g) [
g
g '

η−
η∂
∂f

+ 
ς∂
∂f

] 

Why we define u/U∞ = f ( η ), but at sometimes we define u/U∞ = 'f ( η ) ? 

(sol): It’s a matter of convenience only,. If we want to use stream function ψ, since 

u=
y∂

∂ψ
, v=

x∂
∂

−
ψ

 in Cartesian coordinate, thus , we would define u as u/U∞ 

= 'f ( η ) such that ψ can be expressed as function of f (η ). Otherwise, ψ must 

be expressed as an integral form, which is not convenient to use. 
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Sub. into Eq. (5.9), we obtain 

 fηηη + α (ζ) f fηη +β (ζ) ( 1- fη2 ) = g2 Ue ( fη fηζ - fζ fηη )  (5.11) 

Where   α (ζ) = g(Ue g ')  

 β (ζ) = g2 '
eU  

We hope to reduce the equation to be a function of η only, also f be a function of η 

only. Therefore, we pick up 

 f = f ( η ) only 

 α = const      (5.12) 

 β = const 

Eqn (5.11) then becomes 

'''f  + α f ''f + β (1-
2'f ) = 0     (5.13) 

(Note: that Blasius equation is a special case of this with α=1, β=0) 

B.C’s: (1) fη (0) = f (0) = 0  

(2) fη (∞) = 1 

 

Question: What are the condition for Ue(ζ) and g(ζ) under which α and β are retained 

constant?  

Ans: That is, we didn’t know Ue(ζ) and g(ζ) yet, and we try to express them in terms 

of constants α and β. 

α = g(Ue g ')  = g2 '
eU  + g 'g Ue 

α-β = g 'g Ue 

and 

2α-β =2 g2 '
eU  + g 'g Ue = (g2Ue

')  
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integrate once 

g2Ue = ( 2α-β )ζ + C  (∵α, β are const., ∴2α - β = const.) 

α-β = g 'g Ue = g 'g { 2

1
g

[( 2α-β )ζ + C]} 

=
g
g '

[( 2α-β )ζ + C] 

or 

g
dg =

C
d
+−

−
ςβα
ςβα

)2(
)(  

ln g = 
βα
βα
−
−

2
)( ln [( 2α-β )ζ + C] + const.  (2α-β ≠ 0)  (5.14) 

≡ −ln k 

→  kg = [ ] βα
βα

ςβα −
−

+− 2)2( C  

let k = 1/k0 

→ g = k0 [ ] βα
βα

ςβα −
−

+− 2)2( C  

and Ue = 2
0

1
k

[ ] βα
β

ςβα −+− 2)2( C  

Let C=0, α=1, k0=1 and define 

 m =
βα

β
−2

  or  β =
m
m

+1
 2α = 

m
m
+1
2  

then Eq. (5.15) → 

 Ue = 2
0

1
k

(
m+1

2 )m ζ m 

≡U0 

or Ue = U0 ζ m     (5.16a) 

 g = (
m+1

2ς )1/2 2/1−
eU    (5.16b) 

 η = 
g
Y

 = 

m

YU e

+1
2ς

    (5.16c) 

 

(5.15)



Advanced Fluid Mechanics 
 

Chapter 5-18 
 

1 2 3 4 5

2.0

4.0

6.0

8.0

0.1

)(' ηf
U

u
=

∞

y
x

Um
ν2

1+
=η

091.0−
0654.0−

0
1
4=m

separation

This is called the” Falkner-Skan Problem”. From potential flow theory, the Eq. (5.16b) 

is corresponding to an inviscid flow passing a wedge of angle πβ. 

 

πβ or 2
πβ

force.)gravity  no plane, ( yx −  

Special cases: 

(1) For m = 1 → β = 1, stagnation flow 

(2) For m = 0 → β = 0, flat plate at zero incidence. 

The solution of Eq.(5.13) namely 

 '''f  + ''ff + β(1-
2'f ) = 0 

with f(0) = 'f (0) = 0, 'f (1) = 1 is 

 

m πβ  → β 

-0.091 -0.199π -35.8ْ -0.199

-0.0654 -0.14π -25.2 ْ -0.14 

0 0 0 ْ 0 

1 π 180 ْ  

4 1.6π 288 ْ  
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Types of Falkner-Skan flow: 

 β m Corresponding flow 

(1) -2≤ β≤ 0 -1/2≤m≤ 0 Flow around an expansion corner of turning angle πβ/2 

(2) 0 0 Flat plate 

(3) 0≤ β≤ 2 0≤m≤∞ Flow against a wedge of half-angle πβ/2 

 (Β=1 m=1 Plane stagnation flow, wedge of 180 ْ ) 

(4) 4 -2 Doublet flow near a plane wall 

(5) 5 -5/3 Doublet flow near a 90 ْ corner 

(6) + ∞ -1 Flow toward a point sink 

 

 

 

 

'f  
''f
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Note: 

(1) For incompressible wedge flow. As the inclined angle πβ/2 increased, the 

fluid is accelerated, and the boundary layer becomes thinner. However, the 

τw is increased. 

Remark: 

(1) From f ’ ~ η figure, we can see that boundary layer grows thicker & thicker 

as β decreasing. (For β = -0.199, separation occurs at y=0.) 

(2) From ''f ~ η figure: 

 ''f corresponding to shearing stress. For β>0, the shearing stress 

decreases as η increases. However, as β < 0, the ''f rises and they decrease as 

η increases. This is because 

 
dx
dpe  = µ

0
2

2

=∂
∂

yy
u = 

wally∂
∂ τ  

Thus for β < 0 (decelerating flow,
dx
dpe > 0). The

wally∂
∂ τ > 0, therefore, 

''f will rise near wall as η increases. 

(3) From ''f ~ η figure: 

-0.199 ≤  β ≤  0 ← there are (at least) two solution 

β < -0.199 ←multiple solution 

(See F.M. White. P.245 for detail) 

(4) As the N-S equations are no unique, the B.L. equations also show multiple 

solutions. 

(5) As described in Dr. Sepri’s Note, the conditions leading to a similar solution 

are: 

(i) B.C need to be similar → (ρv)0 restricted in form 

(ii) I.C is similar, that is, can’t accept an arbitrary f0(η) 
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(iii) External pressure gradient must comply with β = const. 

(iv) Density profile is similar. 

As m = -0.091, 
0=∂

∂

yy
u

= U∞
0=ηηηf = 0, therefore, the separation occurs. We 

conclude that 

If m > 0 

 0>
dX

dUe , ⇒  
dx
dpe = －ρUe dX

dUe <0 

  ⇒  accelerating flow 

If m < 0 (but －1/2 < m) 

 
dX

dUe < 0, ⇒
dx
dpe > 0 ⇒  decelerating flow  

 

In this course, the flow is taken as incompressible; therefore, the flow is a accelerated 

as it past a wedge and decelerated as it past a corner. 

0>
dx

due

nozzle) (subsonic

0<
dx

due

diffuser) (subsonic  

However, as the flow is compressible, it will be different, e.g. 

1M

2Mshock

)M(M 21 >

expansion

1M
2M

)M(M 21 <

21 TT >21 TTbut <

diffser) c(supersoni nozzle) c(supersoni  

Since M=
RT

V
γ

→V=M RTγ  

It hard to tell whether V1>V2 or V1<V2 

But normally V1<V2 
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(In x-y plane, no gravity force acting) 

0>m
0<m

.
0→u

.

∞→u  

)(X

)(V

∞U

0>
dx

dUe 0<
dx

dUe

seperation  ,0
0
=

∂
∂

=yy
u

 

 

 

 

eU

1
2

3 4
5. .

 

For curve 1-4, 2-4 & 3-4, the velocity profile at 5 will not be the same. 

 

(Cannot determine the
dx

dUe >0 or
dx

dUe <0 from the 

slope of the local surface w.r.t the free-stream direction. 

It normally further upstream as shown) 



Advanced Fluid Mechanics 
 

Chapter 5-23 
 

Problem: 

Show that (δ*/τw) dp/dx represents the ratio of pressure force to wall friction force 

in the fluid in a boundary layer. Show that it is constant for any of the Falkner-Skan 

wedge flows. (J. schetz. P. 92, prob. 4.6) 
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5.4 Flow in the wake of Flat Plate at zero incidence 

Preface: the B.L. equation can be applied not only in the region near a solid wall, but 

also in a region where the influence of friction is dominating exists in the 

interior of a fluid. Such a case occurs when two layers of fluid with different 

velocities meet, such as: wake and jet. 

 
Consider the flow in the wake of a flat plate at zero incidences 
 

l

y

∞U ∞U∞U

δ

1A

A

1B

B
x

h

surface control




≠
= ∞

0v
Uu

),( yxu

 
 

Want to find out: (1) the velocity profile in the wake. 
Assume: dp/dx = 0 
 
For the mass flow rate: (Σ= 0) 

 At AA1 section = ρ ∫
h
0

U∞dy  (entering) 

 At BB1 section = -ρ ∫
h
0

udy  (leaving) 

 At AB section = 0 

 At A1B1 section = -ρ ∫
h
0

(U∞- u)dy ← (To keepΣmass= 0) 

 
 

Actually along A1-B1, the u = U∞, the mass must be more 

out to satisfy continuity m& = -ρ ∫
B
A

v(x, h)dx  
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For the x-momentum floe rate: 

 At AA1 section = ρ ∫
h
0

U∞
2dy  (entering) 

 At BB1 section = -ρ ∫
h
0

u2dy  (leaving) 

 At AB section = 0 

 At A1B1 section = ABm& U∞ = U∞ [-ρ ∫
h
0

(U∞- u)dy] = -ρ ∫
h
0

U∞(U∞- u)dy 

 

Drag on the upper surface =Σ Rate of change of x-momentum in A1-B1-B-A  

= ρ ∫
h
0

u(U∞- u)dy  (5.17) 

In order to calculate the velocity profile, let us first assume a velocity defect u1(x, y) 

as 

 u1(x, y) = U∞- u(x, y)  (5.18) 

and u1 << U∞, which occurs some distance downstream of the trailing edge of the 

plate (x > 3l ). Substituting (5.18) into the B.L. equation, namely 

u
x
u
∂
∂ +v

y
u
∂
∂ =ν 2

2

y
u

∂

∂  

gives  

 (U∞- u1)
x∂
∂

(U∞- u1) + v
y∂
∂

(U∞- u1) =ν 2

2

y∂
∂

(U∞- u1) 

after neglecting the high order terms of u1, it yields 

 U∞

x
u
∂
∂ 1 =ν 2

1
2

y
u

∂

∂  (5.19) 

 
With B.C’s: 

(i) y =0,  
y
u
∂
∂ 1 = 0  (5.20a) 

(ii) y→∞,  u1 = 0 (5.20b) 
 

(u1 
x
u
∂
∂ 1 ,  v

x
u
∂
∂ 1 )  

<<1  <<1   <<1 <<1     

we can neglect the h.o.T. of u1, since 
u1 << U∞ 
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In order to transform the P.D.E. to a O.D.E., we introduce a new variable similar to 

the Blasius method for the flat plate as 

 η = y
x

U
ν

∞     (5.21) 

and assume that  

 u1 = C U∞ f(η)(l /x)1/2  (5.22) 

Aside: the reason for taking x-1/2 in u1 is that  

D = ρ ∫
h
0

u(U∞- u)dy ≈ ρ ∫
h
0

U∞ u1dy ≈ ρ ∫
h
0

U∞ u1(
∞U
xν

)1/2dy 

To make D independent of x so that the solution is similar along 

x-direction, u1 must ~ x-1/2 

 

Substituting Eq.(5.21) & (5.22) into (5.19) gives 

 2

2

ηd
fd

+
2
1
η

ηd
df

+
2
1

f = 0  (5.23) 

with B.C’s 

(i) η =0,  
η∂
∂f

= 0  (5.24a) 

(ii) η→∞,  f → 0 (5.24b) 

Integrate once 

 
ηd

df
+

2
1
∫
η
0
η

ηd
df

dη + 
2
1
∫
η
0

f dη = C1 

(∫ udv = uv-∫ vdu) cancel 

(=
2
1 ηf - 

2
1
∫
η
0

 f (η)dη) 

⇒   
ηd

df
+

2
1 η f (η) = C1 = 0  (5.25) 

From (5.24a)
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 ln f = 
4

2η
− + C2   ∴ f = C3 4

2η−
e  

Without lose of generality, we can set C3=1, and therefore 

 f (η)= 4
2η−

e   (5.26) 

Sub. (5.26) back to Eq. (5.22) to get 

 u1 = C U∞ (l /x)1/2 4
2η−

e   (5.27) 

and  

 D = ρU∞
2 C(

∞U
lν

)1/2∫
∞

0
f (η)dη  (∵ =∫

∞ −
η

η
de

0
4

2

π1/2) 

=ρU∞
2 C π

∞U
lν

 

Compare with the exact solution which we have obtained as before as 

 D = 0.664 ρU∞
2 (

∞U
lν

)1/2  (-one-side flat plate) (5.6a) 

We can get C = 
π

664.0
 

Therefore 

 u1 = 
π

664.0 U∞ 2
1

)(
x
l  x

Uy
e   4

2

ν
∞−

  (5.28) 

(Amplitude)  (decaying factor) 

The velocity distribution is: 

0.1

0 44−

5.0

max 1
1

u
u

x
Uy
ν

∞=η

0 3
0.1

0

∞U
u

5.1

5.0

0

4=
l

x

lν
∞Uy

2
1

g)Schlichtinin  (p.179

max1)(u
1u
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Remark: 

(1) Eq.(5.19) is a linear conduction equation, so it can actually be by separation 

variables easily. 

(2) A”wake” is the”defect” in stream velocity behind an immersed body in a 

flow. 

(3) A slender plane body with zero lift produces a smooth wake whose velocity 

defects u1 decays monotonically downstream. 

(4) A blunt body, such as a cylinder, has a wake distorted by an alternating shed 

vortex structure. 

(5) A lifting body will superimpose shed vortices of one sense. 

(6) From velocity profile, we can assume boundary edge (u1/Umax ≈ 0.01) 

occurs when η ~ 4 thus 

 η = y
x

U
ν

∞  

 → 4 =δ
x

U
ν

∞  

  ∴δ = 

x
U

ν
∞

4 = 
)(

4
ν∞U ν

xU∞  

 ∴δ ~ Rex
1/2 (similar to the B.L. thickness growing in upper  

surface of a flat plate) 

(See p.22 of Van-Dyke book) 

(7) In meet cases, the wake flow becomes turbulent due to the stability of the 

wake flow. From velocity profile, there is a part of inflexion, which will 

cause the unstability of the flow structure. 
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5.5 Two-Dimensional Laminar Jet 

 
Consider a 2-D Laminar Jet 

 
The total momentum of the Jet remains constant, i.e., independent of the x, or 

 J =ρ ∫
∞

∞−
u2 dy = const  (5.29) 

Assume 

 u ~ )(' qx
yf  (5.30) 

and the stream function 

 ψ ~ px f ( qx
y

) = px f (η), where η = qx
y

 (5.31) 

We now need to determine p & q. 

(i) J = constant 

⇒  ∫
∞

∞− ∂
∂ 2)(

y
ψ dy = independent of x. 

⇒  ∫
∞

∞− ∂
∂

∂
∂ qp x

y
fx 2][ η
η

dη = ∫
∞

∞−
−

∂
∂ qqp xfx 2][
η

dη = independent of x. 

⇒  power of x:  ( p-q )×2 + q = 0 

⇒  2p-q = 0 (5.32) 

 

0=
dx
dp
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(ii) From momentum equation: 

u
x
u
∂
∂ + v

y
u
∂
∂  = ν 2

2

y
u

∂
∂  

 

⇒ ( p-q ) + ( p-q-1 ) = p-3q  

⇒  p+q = 1 (5.33) 

 

From (5.32) & (5.33): p = 1/3, q = 2/3 

Therefore 

η ~ 3/2x
y   ⇒  η = C2 3/2x

y  (5.34) 

ψ ~ x1/3 f ( 3/2
2

x
yc )⇒  ψ =C1 x1/3 f ( 3/2

2

x
yc ) (5.35) 

Thus  u =
y∂

∂ψ = C1C2 x-1/3
ηd

df
 

 v = 
x∂

∂
−

ψ = 
3
1 C1 x-2/3 f (η) + C1 x1/3(-2/3) 3/5

2

x
yc

η
η

d
df )(  

= 
3
1  x-2/3 C1 [ f (η)- 3/2−x 2η

ηd
df ] 

Sub. Into the momentum equation, we can get 

 C1/3 = νC2  (such that the terms contain x, f(x) are omitted and the 

P.D.E→ O.D.E) 

Choose C1 = ν1/2,  C2 =1/(3ν1/2) 

 η = 3/22/13 x
y

ν
    (5.36a) 

 ψ =ν1/2 x1/3 f (η)   (5.36b) 

 u = 
3
1 x-1/3

ηd
df    (5.36c) 

 v = 
3
1 x-2/3ν

1/2 [f (η)- 2η
ηd

df ] (5.36d) 
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Substituting (5.36c) & (5.36d) into the momentum equation, we obtain 

 (
ηd

df )2 + f ( 2

2

ηd
fd ) + 3

3

ηd
fd =0 (5.37) 

 ○1  ○2  ○3  

With B.C’s: 

 
0=∂

∂

yy
u =0 → 

0
2

2

=ηηd
fd =0 

 
0=y

v =0 → f (0) = 0 (5.38) 

 
0=y

u → 0 → 
ηd

df → 0 as η → ∞ 

Integrate Eq. (5.37) by past: 

○1  = η
η

η
d

d
df 2

0
)(∫ = η

ηηη
η

d
d

fdf
d
dff

d
d

∫








−
0 2

2

][  

= η
ηη

η
d

d
dff

d
d

∫0 ][ - η
η

η
d

d
fdf∫0 2

2

 

= f (
ηd

df ) - η
η

η
d

d
fdf∫0 2

2

 

○2  = ∫ η
η

d
d

fd
3

3

= 2

2

ηd
fd  

So that Eq. (5.8) becomes 

 2

2

ηd
fd

+ f (
ηd

df ) = C1= 0  (5.39) 

    (∵ )0(''f = f (0) = 0, ∴ C1 = 0) 

Define: ζ = aη 

 f (η) = 2a F( ζ ) 

⇒  
ηd

df = 2a
ςd

dF a, 2

2

ηd
fd = 2a 2

2

ςd
Fd a2 (5.40a,b) 

Sub. Into Eq. (5.39): 

 2

2

ςd
Fd + 2F

ςd
dF = 0 
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integrate once 

 
ςd

dF + F2 = C2 = 1 

(Let C2 =1 without loss of generality) 
(Since we haven’t determine the value of”a”, thus, we 
can set C2 equal to arbitrary value without ref. to the 
B.C.)(If we do not set ζ = aη, f (η) = 2a F( ζ ), then the 
integration C2 cannot be arbitrary, we need to determine 
coefficient C2 by keep J = const.) 

⇒  ∫ − 21
/
F
ddF ς = ∫ ςd 1  

⇒  tanh-1 F = ζ + C3  

0 (ζ = 0, f = F = 0, ∴C3 =0) 

⇒  tanh ζ = F 

From (5.40a) 

 
ζd

dF
= 2a2 (1- tanh2 ζ ) 

⇒  u = 3/1

2

3
2
x
a (1- tanh2 ζ )  (5.41) 

The constant”a” is remained to determine. We can get ”a” from the J value which is a 

known value. 

 J = ρ ∫
−∞

∞
2u dy = 

a
x 32 2/13/2 ν  

9
4

3/2

4 
x

aρ
∫
+∞

0
(1- tanh2 ζ )2 dζ 

=2/3 

= 
9

16
ν

1/2a3ρ 

Therefore 

 a = (
1/2νρ

J
16
9 )1/3  (5.42) 

and  

 umax = 0=yu  = 0.45(
x

J
ρµ

2

)1/3 (5.43) 
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The volume rate of discharge across any vertical plane is  

 Q& = ∫
∞

∞−
udy = 3.3019(

ρ
xJν )1/3 (5.44) 

or m& = ρQ&  = 3.3019( Jρµx )1/3 

From Eq.(5.43) we know that the max axial velocity decreases as x increases. 

However, from Eq.(5.44) we downstream direction, because fluid particles are carried 

away with the jet owing to friction on its boundary. It also increases with increasing 

momentum. 

 

Remark: 

(1) Note that m&  ~ x1/3 because the jet entrains ambient fluid by dragging it 

along. However, Eq.(5.44) implies falsely that m& =0, which is the slot 

where the Re ~ 
µ
m& ~ ( 2

 
µ
ρ xJ

)1/3. The B.L. theory is not valid for Re is small. 

Therefore, we cannot ascertain any details of the flow near the jet outlet 

with B.L. theory. 

(2) Since jet velocity profile are S-Shaped (i.e. have a point of inflection), they 

are unstable and undergo transition to turbulent early – at a Re of about 30, 

based on exist slot width and mean slot velocity. 

(3) Define the width of the jet as twice the distance y where u = 0.01 umax, we 

then have 

Width = 2
maxu %1=u

y ≈  2.18(
ρ
µ

J
x 22

)1/3 

Thus Width ~ x2/3 and   ~ J -1/3  
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Chapter 6 Approximate methods for the Solution of the 2-D, 

steady B.L. Equations 

 
In the history of the developing the B.L. flow, we have: 

(1) Analysis solution (exact solution): A exact solution consists every term in the 

B.L. equation although some of terms may be identically zero. We do not imply 

that an exact solution is one in a closed form; it could be a convergent series. 

→ For as complex geometry (specially with pressure gradient), this method is 

difficult and sometimes impossible. We have discussed some simple case in the 

previous chapter.  

(2) Approximate Solutions: All approximate methods are integral methods which 

do not attempt to satisfy the B.L. equation for every streamline; instead, the 

equations are satisfied only on an average extended over the thickness of the 

B.L. → well-suited to the generation of a quick outline of a solution even in 

more complex cases. This technique is important before the advent of fast 

computer. 
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6.1 Karman’s Integral Momentum Relation 
 

Consider a steady, 2-D, compressible flow: 

Continuity: 

 
t∂

∂ρ
+∇．(ρV

v
) = 0 

 
x
u
∂

)(ρ
+

y
v

∂
∂ )(ρ

 = 0 (6.1) 

B.L. Eq: 

 ρ[u
x
u
∂
∂

+v
y
u
∂
∂

] = 
dx
dp

− +
y∂
∂

[μ
y
u
∂
∂

] 

Since ρu
x
u
∂
∂

+ρv
y
u
∂
∂

= [ρu
x
u
∂
∂

+ρv
y
u
∂
∂

] + [
x
u
∂

)(ρ
+

y
v

∂
∂ )(ρ

]．u  

  = [ρu
x
u
∂
∂

+ u
x
u
∂

)(ρ
] + [ρv

y
u
∂
∂

+ u
y
v

∂
∂ )(ρ

] 

  = 
x∂
∂

(ρu2) + 
y∂
∂

(ρuv) 

∴  
x∂
∂

(ρu2) + 
y∂
∂

(ρuv) = 
dx
dp

− +
y∂
∂

[μ
y
u
∂
∂

] (6.2) 

 

Integrate the continuity equation from y = 0 to y =δ: 

 ∫
δ
0 x

u
∂

)(ρ
dy +∫

δ
0 y

v
∂

∂ )(ρ
dy = 0 

(Leibnitz’s rule) 

 
x∂
∂
∫
δ
0
ρu dy －ρe ue dx

dδ
 +ρe ue －ρ0 u0 = 0 

⇒  ve = 
eρ

1


∂
∂

− ∫
δ
0x

ρu dy +ρe ue dx
dδ

+ρ0 u0   (6.3) 

Integrate the B.L. equation: 

 ∫
δ
0 x

u
∂

)( 2ρ
dy +∫

δ
0 y

uv
∂

∂ )(ρ
dy = ∫ −

δ
0

)(
dx
dp

dy +∫
δ
0 y∂

∂
(μ

y
u
∂
∂

) dy 

 ○1  ○2  ○3  ○4  
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○1  = 
x∂
∂
∫
δ
0
ρu2 dy－ρe ue

2

dx
dδ  ( Leibnitz’s Rule) 

○2  = ρe ue ve－ρ0 u0 v0 =ρe ue ve = ue [ ∫∂
∂

−
δ
0x

ρu dy +ρe ue dx
dδ

+ρ0 u0] 

  (=0, ∵ u0 = 0) (Eq.(6.3)) 

○3  = )(
dx
dp

− δ (∵
dx
dp

= fn(x) only from the B.L. Theory) 

○4  =μ(
y
u
∂
∂

)y=δ－μ(
y
u
∂
∂

)y=0 = －τ0 

 

Therefore, the B.L. equation becomes 

 
x∂
∂
∫
δ
0
ρu2 dy－ρe ue

2

dx
dδ

－ue ∫∂
∂ δ

0x
ρu dy +ρe ue

2
 dx

dδ
+ρ0 u0 

 = )(
dx
dp

− δ －τ0   (6.4) 

If we evaluate the B.L. equation at y =δ, we have 

 ρ[ue x
u
∂
∂

 + ve y
u
∂
∂

] = 
dx
dp

−  + 
y∂
∂

[μ
y
u
∂
∂

] 

 =0  ( = 0 at y =δ) 

 ρue dx
due = 

dx
dp

−   (6.5a) 

Also 

 ue ∫∂
∂ δ

0x
ρu dy = 

x∂
∂

[ ue∫
δ
0 ρu dy ]－

dx
due ∫

δ
0 ρu dy 

= 
x∂
∂

[ ∫
δ
0 ρu ue dy ]－

dx
due ∫

δ
0 ρu dy (6.5b) 

Sub. (6.5a) & (6.5b) into (6.4), we have 

 
x∂
∂
∫
δ
0

(ρu2
－ρu ue)dy + 

dx
due ∫

δ
0 ρu dy －ρe ue dx

due δ+ ueρ0 v0 = -τ0 

or 

 
dx
d

ρe ue
2 ∫

δ
0 eeu

u
ρ
ρ

(1
eu

u
− )dy +ρe ue dx

due ∫
δ
0 [1

eeu
u

ρ
ρ

− ]dy－ueρ0 v0 = -τ0 

 

at y =δ
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Lf we define 

 Displacement thickness ≡δ*≡∫
δ
0 [1

eeu
u

ρ
ρ

− ]dy 

 Momentum thickness  ≡ θ ≡∫
δ
0 eeu

u
ρ
ρ

(1
eu

u
− )dy 

Remark: for incompressible flow, ρe=ρ, the definition of δ* and θ is the same as 

those in the previous chapter. 

 

Then the equation becomes 

 τ0 = 
dx
d

(ρe ue
2θ) +ρe ue dx

due δ*－ ueρ0 v0 (6.7) 

”Karman’s Integral Momentum Relation” 

 

Remark: 

(1) For a given problem, ρe(x),  ue(x), ρ0, v0 are known therefore, we have 

three unknownδ*,θ andτ0, but has only one equation. How can we solve 

the equation? 

(2) For an incompressible flow (ρ=ρe= const), and ρ0 = ρe the integral 

momentum equation becomes 

 
ρ
τ 0 = ue

2

dx
dθ + (2θ +δ*) ue

dx
due  -  ue v0 (6.8a) 

or in dimensionless form 

 
2

fC
= 

dx
dθ +

dx
du

u
e

e

1
(2θ +δ*) - 

eu
v0   (6.8b) 

where 

 fC  = 2
2
1

0

euρ
τ

 

(6.6)
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6.2 Solution of the Integral momentum equation 
 
If we assume a non-dimensional shape of the velocity profile, such as 

 
eu

u
 = f (

δ
y

) (6.9) 

then Eqn(6.7) will reduced to one equation for one unknownδ(x), sinceδ*, θ can 

be obtained by integrating the assumed velocity profile. We try a simple problem to 

see whether this ideal work or not. (andτ0 can be obtained by setτ0 =μ 0)( =∂
∂

yy
u

) 

Consider a incompressible flow past a flat plate without suction / injection, then 

Eq.(6.8) becomes (due/dx = 0) 

 
dx
dθ

= 
2

fC
= 2

0

euρ
τ

 (6.10) 

The velocity profile must satisfy u(0) = 0 (No slip wall condition) and u(δ) = ue. 

Take the simple guess for the velocity profile, we assume 

 
eu

u
 = 

δ
y

 (6.11) 

then θ= ∫
δ
0 eu

u
(1-

eu
u

)dy =
6
δ  

 τ0 =μ 0)( =∂
∂

yy
u

=μue /δ 

Therefore, equation (6.10) becomes 

 δ
dx
dδ

=
eu

)/(6 ρµ
 

integrate once 

 δ2 = 
eu

x)/(12 ρµ
 + C 
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Sinceδ(x = 0) = 0 ⇒  C = 0 

The boundary layer thickness is thus 

 δ(x) = 
eu

x)/(12 ρµ
 

or 
x
δ

 = 
xueρ
µ12

 = 3.46 Rex
-1/2  (6.12a) 

The friction coefficient Cf is 

 Cf = 2
2
1

e

w

uρ
τ

 = 2
2
1

/

e

e

u
u
ρ

δµ
 = 0.577 Rex

-1/2  (6.12b) 

From the exact solution as shown in chapter 5, we have obtained 

 
x
δ

 = 5 Rex
-1/2 (5.4) 

and Cf  = 0.664 Rex
-1/2  (5.5a) 

Thus, this simple analysis has achieved the correct dependence on Rex, bit fairly good 

numerical values for the coefficients. 

 Question: Any better velocity profiles or better methods? 
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dy

dx

pdy

dydx
dx
dpp )( +

6.2.1 The Pohlhausen Method (1921) 

Pohlhausen assume 

 
eu

u
= a + b (

δ
y

) + c (
δ
y

)2 + d(
δ
y

)3 + e(
δ
y

)4  (6.13) 

a, b, c, d, e, which may be the function of x, are determined by the following B.C’s: 

(i) At y = 0, u = 0 (No slip wall condition) 

(ii)  At y =δ,  u = ue 

(iii)  At y =δ,  
y
u
∂
∂ =0 (continuous of u at y =δ) 

(iv)  At y =δ,  2

2

y
u

∂
∂ =0 

(v)  A t y = 0,   µ 2

2

y
u

∂
∂  = 

dx
dp  

 

 

 

 

In equilibrium, pressure forces = shear force. 

 p(dy) – ( p +
dx
dp dx )dy = -µ 2

2

y
u

∂
∂ dx + µ 








∂
∂

∂
∂

+
∂
∂ dy

y
u

yy
u )( dx 

 ⇒  
dx
dp  = µ 2

2

y
u

∂
∂  

 Note: this is similar to the G.E. for the slowly motion, where the inertia force is 

neglected too. 

 ⇒  2

2
δ

µ eCu
= 

dx
dp  

 ⇒  C = 
eu
dxdp

 2
)/(2

µ
χ  = 

ν2

2δ
−

dx
due   (

dx
dp  = -ue dx

due ) 

Define: 

 λ (x) ≡ 
ν

2δ
dx
due  ≡ Pohlhausen parameter 

u = v = 0 near the wall, thus, the 
momentum flux is negligible. 
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We have give unknown (a, b, c, d, e), but we have 4 B.C’s ((i) → (iv)) and define  

C = 
2
λ

−  in B.C. (iv); therefore, the a, b, d, e can be expressed in terms of λ (x). The 

final results is 

 a = 0 

 b = 2 +
6
λ  

 c = 
2
λ

−  

 d = -2 +
2
λ , e = 1-

6
λ  

here

δ

eu

euu =

0=
∂
∂

y
u

02

2
=

∂

∂

y
u

eu

here euu =

0=
∂
∂

y
u

02

2
≠

∂

∂

y
u

 

 

Note: 

We assume a velocity profile containing a-e give undetermined coefficient, 

therefore, we need give B.C’s to solve it. The coefficient is expressed in terms 

ofλ, which is dependent on the known potential velocity (
dx

due ) and a 

unknownδ(x). Theδ(x) should be determined by the Karman’s Integral 

momentum equation. 
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Define: η = y/δ 

The velocity profile becomes 

 
eu

u = (2η - 2η3 + η4) + 
6
λ (η - 3η2 + 3η3 – η4) (6.14) 

 fn (x, y) ≡F(η)  fn (x)  ≡G(η) 

Before proceeding to findδ(x), we first check whether there is some limitation on the 

value of λ (x) ? (Findδ(x) or λ (x) is equivalent since λ ≡ 
ν

2δ
dx
due  where

dx
due  is 

known ) 

(1) The separation occurs as 

 
0=∂

∂

yy
u = 0 ⇒  2 + 

6
λ  = 0 ⇒  λ = -1/2 

(2) For flow past a flat plate or at a point where ue reaches its max. or minimum 

value: 

 
dx

due = 0 ⇒  λ = 
ν

2δ
dx
due  = 0 

(3) If we plat u/ue ~ η for different value of λ, as shown below: 

2.1

0.1

0

2.0−
1

δη /y=

eu
u

)separation( 12−=λ

12=λ

30=λ

 

We find that to maintain u/ue <<1, it must be λ ≤ 12. Therefore, the range of λ is 

 -12 ≤ λ ≤ 12  (6.15) 
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By the velocity profile given in Eqn (6.14), we get  

 δ* = δ(
12010

3 λ
− ) 

 θ  = 
63
δ (

144155
37 2λλ

−− ) (6.16) 

 τ0 =μ
0

)(
=∂

∂

yy
u = 

δ
µ eu 

(2 +
6
λ ) 

Next step is to solve the integral momentum equation in terms of λ (x). For 

incompressible flow without wall injection/ suction, Eq. (6.8a) gives 

 
euµ
θτ 0  = 

ν
eu θ

dx
dθ  + ( 2 + 

θ
δ *

)
ν

2θ
dx
due  (6.17) 

Note that equation (6.17) do not containδ(x) explicitly. We thus try to solve θ(x), and 

then deduceδfrom it with the cuds of Eq.(6.16). 

Introduce 

 Z ≡ 
ν

2θ  λ 

 K ≡ 
ν

2θ
dx
due  ⇒  K = Z

dx
due  = (

δ
θ )2

ν

2δ
dx
due  

 = (
315
37

-
945
λ

-
9072

2λ )2 λ (6.18a) 

Denote 

 
θ
δ *

=
2

9072
1

945
1

315
37

120
1

10
3

λλ

λ

−−

−
 ≡ f1 (K)  (shape-factor correlation) (6.18b) 

and 

 
euµ
θτ 0  = (2 +

6
λ )(

315
37

-
945
λ

-
9072

2λ ) ≡ f2 (K) (6.18c) 

Also note that 

 
ν

 θ
dx
dθ  = 

dx
d

2
1 (

ν

 2θ ) = 
dx
dZ

2
1  

 

(6.16)→
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Eqn (6.17) becomes 

 f2 (K) = 
dx
dZue

2
+ ( 2 + f1 (K) )K 

or 

 ue dx
dZ = 2 f2 (K) – 4K – 2K f1 (K)  (6.19) 

Denote: 

 F(K) ≡ 2 f2 (K) – 4K – 2K f1 (K) 

 = 2 (
315
37

-
945
λ

-
9072

2λ )[2-
315

116λ + (
945

2 +
120

1 )λ2 +
9072

2 λ3] (6.20) 

 (6.18) 

Eqn (6.19) thus becomes 

 
dx
dZ =

eu
KF )( , where K = Z

'
eu   (6.21) 

This is a non-linear, 1st order O.D.E for Z as a function of x. It can be solved 

numerically starting from the initial point. The question is where is the initial point 

and how large is the initial value? 

 

Initial condition: 

The calculation should start at x = 0 (stagnation point), where 

 ue = 0, 
dx
due ≠ 0 but finite value. 

 (for the flow passing a curved surface body) 

 

0=eu
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Since  
dx
dZ =

eu
KF )(  

That is, F(K) must be zero at the stagnation point, otherwise, 
dx
dZ will become infinite, 

which is physically meaningless. Therefore, at x = 0 

 F(K) = 0 λ = λ0 = 7.052 

  or  K = K0 = 0.0770 

The initial value of Z and dZ/dx are 

 Z0 = 

0

0

=x

e

dx
du

K
 = 

0

077.0

=x

e

dx
du

 

 (
dx
dZ )0 = (

eu
KF )( )0 = (

dxdu
dx
dK

dK
dF

e /
)0 = -0.0652

2
0

02

2

)(

)(

=

=

x
e

x
e

dx
du
dx

ud

 

 Hosptial Rule (6.20)(6.18a) 

 

Computational procedure: 

(1) ue (x), 
dx
due , and 

0
2

2

=x

e

dx
ud

 are given by potential flow. 

(2) Integral Eq.(6.21)  → Z(x) & K(x) 

(3) By equation of K =
ν

2θ
dx
due  → θ(x) 

(4) By equation (6.18a)  → λ (x) 

(5) By (6.18b) & (6.18c) →δ*,τ0 

(6) By (6.16) →δ 

(7) By (6.14) → u / ue 

The calculation is continuous until λ (x) = -12 or K = -0.1567, where the separation 

occurs. 

 

Eq. (6.20)
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Example: For a flat plate case. 

 
dx
due = 0 → λ (x) = 

ν

2δ
dx
due = 0 

 The assumed velocity profile (6.14) becomes 

 
eu

u = 2η - 2η3 + η4 

(6.18) ⇒  K = Z
dx

due =0 

(6.20) ⇒  F(0) = F(K) = 2(
315
37

)(2) = 0.1698 

(6.21) ⇒  
dx
dZ =

eu
KF )( =

eu
4698.0   

 ∴ Z = 
eu

4698.0
x + C 

Since  x = 0, Z = 0 (why?) →  

 

 ∴ Z = 
eu

4698.0
x = ….. 

From (6.16) with λ = 0, it yields 

 
δ
δ *

= 0.3, 
δ
θ

= 
63
1

(
5

37
) = 0.1174, τ0 = 

δ
µ eu 2

 (6.22) 

From exact solution, we know 

 δ= 5
eu

νx
, δ* =1.7208

eu

νx
, θ=0.664

eu

νx
 

 τ0 = 0.332μue (
νx

eu
)1/2 

Take  
eu

u
= a + b (

δ
y

) + c (
δ
y

)2 +….. 

since shape edge flat plate (
dx
due = 0), and Z

=
ν

2δ
), at x = 0, δ= 0 ∴ Z = 0 at x = 0. 

don’t need this procedure 

to get 
δ
δ *

 ,
δ
θ

, andτ0 
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With λ = 0, (
dx
due = 0), we have 

 
δ
δ *

= 0.3,  
δ
θ

= 0.1174,  τ0 = 
δ
µ eu 2

 

Sub. into the Karman Integral equation 

  
euµ
θτ 0 = 

ν
euθ

dx
dθ  

 (
δ
µ eu 2

)(0.11748)(
euµ

1
) = (0.11748δ)(

ν
eu

)
dx
d

[0.11748] 

 ⇒  0.2348 = (0.0138)
ν

eu
δ

dx
dδ

 

 ⇒  17.015
eu

ν
=δ

dx
dδ

=
2
1

dx
d )( 2δ

 

 ⇒  
dx

d )( 2δ
= 34.03

eu

ν
 

 ⇒  δ2 =34.03
eu

νx
 

 ⇒  δ = 5.83
eu

νx
 or 

x
δ

= 5.83 Rex
-1/2  

And the exact solution isδ= 5
eu

νx
, therefore, the Pohlhausen Method is closed 

exact solution than taking 
eu

u
= 

δ
y

 case. 

Therefore, 
δ
δ *

= 
5

7208.1
= 0.344 

 
δ
θ

= 
5
664.0

 = 0.1328 (6.23) 

 τ0 = 0.332μue (
δ
5

) = 1.66
δ
µ eu 
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For the simple case with due /dx = 0. The Pohlhausen’s Method is ok. However, 

for due /dx < 0 , this method becomes some what inaccurate as the point of separation 

is approached. 

For example, for a flow past a circular culinder, the separation point is founded 

to be as follows. 

method 
Numerical method slove directly 

the Differential equation 
Blausius series 
up to x˝ term 

Pohlhausen’s 
approx. method 

sφ  104.5° 108.8° 109.5° 

 (Best) (Worse) 

(The above result is obtained by calculating ue(x) from potential flow) 

∞u
sφ

 

For flow over a flat plate. 

Different velocity profiles yield different result 

○1  Assume u ≈ U ( 2

22
δδ
yy

− ) (p.222 Eq. 4-11 in while, we cove flow) 

 δ/x ≈ 5.5 Rex
-1/2 

 δ*/x ≈ 1.83 Rex
-1/2 

 θ /x  ≈ 0.73 Rex
-1/2 

 

○2  Assume 
U
u
≈ 

2
3

(
δ
y

) - 
2
1

(
δ
y

)3 (White. Prob.4.1. P.329) 

 δ/x ≈ 4.64 Rex
-1/2 

 δ*/x  ≈ 1.74 Rex
-1/2 

 θ /x  ≈ 0.64 Rex
-1/2 

?
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○3  Assume 
U
u
≈ sin (

δ
π
2

y
) (White. Prob.4.3 p.330) 

 δ/x ≈ 4.80 Rex
-1/2 

 θ /x  ≈ 0.656 Rex
-1/2 

(The B.C’s needed for velocity profile is described very completely on p.534 in 吳望

一編著，流體力學.（歐亞）) 
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6.2.2 The Thwaite-Walz Method (1949) 
 

Eq. (6.21) say 

 
dx
dZ =

eu
KF )( ,  K = Z

'
eu  

Thwaits-Walz plat the F(K) ~ K from the Pohlhausen profile and other experimental 

data, and find that the corresponding curve can be approximated by the formula 

 

 

 F(K) = 0.45 – 6.0K  (6.24) 
 
Therefore 

 ue dx
dZ = 0.45 - 6.0K 

 ue
dx
d

(
dxdu

K

e /
) + 6K ue

5 = 0.45 ue
5 

 = 
dx
d

(
dxdu

Ku

e

e
/

6
) 

⇒  
dxdu

Ku

e

e
/

6
 = 0.45 ∫

x
eu

0
5 dx + C1 

Since ue (0) = 0 → C1 = 0 

F(K) = 0.45 – 6.0K 

K (F. 4-22 on p.269 of White) 
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Thus 

 K = 6
45.0

eu dx
due ∫

x
eu

0
5 dx  (6.25) 

Since K = 
ν

2θ
dx
due  

 ∴ θ= 0.45νue
-6 ∫

x
eu

0
5 dx  (6.26) 

 

Calculating procedure: 

(1) Known ue (x)   K(x) 

 θ(x) 

(2) By Eqn (6.18b) & (6.18c) → 

 δ*=θf1 (K) 

 τ0 =
δ
µ eu  f2 (K) 

The f1(k) and f2(k) are empirical correlated by Thwaits and listed in Table 4.7 on p.314 

of White’s:”Viscous flow” 

k f1(k) f2(k) F(k) 

...... 

…
…

 

…
…

 

…
…

 

 
(In F. White, 2nd ed. the f1(k) and f2(k) are listed in p.270 table 4-4. The writer shown 
that f1(k) and f2(k) can be curve pitted by the following equations: 

 f1(k) ≈ ( K + 0.09)0.62 

 f2(k) ≈ 2 + 4.14N – 83.5N2 + 854N3 – 3337N4 + 4576N5 

where N = 0.25 -λ  

 

 

(6.25)

(6.26)

(6.27a-d)
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Remark: (1) Thwaites method is about ±5% for favorable or mild adverse gradients 

but may be as much as ±15% near the separation point. 

 (2) The writer regards Thwaites method as a best available one-parameter 

method. 

(3) If more accuracy is desired FDM is recommended. 

Remark: 

(1) We previously mention that ue (x) can be obtained from potential flow. 

However, in a flow past a blunt body the broad wake caused by bluff – body 

separation is a first – order effect; i.e., it is so different from potential flow 

that it alters ue (x) everywhere, even at the stagnation point. Thus, the 

potential flow is not suitable input for the boundary – layer calculation. 

However, once the actual ue (x) is known, the various theories are exact. For 

example: for a circular cylinder 

 experiment FDM 
(Smiths. 1963) Thwaits Series method of 19 

terms (Howarth) 
sφ  80.5° 80.5° 78.5° 83° 

φ

 

Note also the sφ calculated by ue from the potential flow is about 104 ~109°, 

which is wrong. 
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(2) All laminar – boundary – layer calculations hinge upon knowing the correct 

ue (x). It is presently a very active area of research to develop coupled 

methods in which a separating boundary layer interacts with and strongly 

modifies the external inviscid flow. (e.g.: B.L/shock interaction)   

(3) A higher order perturbation method or asymptotic expansion method is 

applied to match the inviscid & viscous region.   
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Chapter 7 Turbulent Boundary Layer 

 

Turbulent Boudary Layer Flow 

Consider the instantaneous motion in a developing turbulent B.L., as superimposed on 

the time-averaged or mean motion. 

x

y )(xδ

A

)(xU

turbulent
),( yxu

•

motion averaged-Time )(a
x

y )(xδ

A

)(xU  ),,( tyxu

•

z

Au

turbulent

flowmean  
D-2for even  .z

motion ousinstantane )(b  

 

u ≡ time–averaged or mean velocity comp. in x – dir. 

u ≡ instantaneous velocity comp. in x – dir. 

Interrelationship between u &u : 

'
Au

Au

t

Au

0 t period sampling ≡=Tt  

Definition of time averaged (only work for steady in the mean) 

(   ) = lim 
T
1
∫

T
0

)     ( dt  

At any instant of time: 

u = u  + 'u  

T→∞ 
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Instantaneous mean turbulent fluctuation about mean. 

Note: 

u = lim 
T
1 )(

0∫ +
T 'uu dt 

Turbulent is always continuous. Not like shock ware. 

u = u  + lim 
T
1
∫

T 'u
0

dt 

u = u  + 'u  ⇒  'u  = 0  
from definition. 

 

Steady in the mean. 

Note: 

○1  The def. of the time averaged applies only for flows that are steady in the 

mean. 

○2  If the mean motion is unsteady (but periodic), ensemble averaging can be 

applied to analyze the turbulent. 

Example: 

(a) Periodic mean motion. 

 tunnelwind  
(b) General unsteady motion 

 
Note: Turbulent fluctuations can be characterized by booking at higher order statistics. 

 

T→∞ 

T→∞ 

Stay away from this problem
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1

23

1

2 3

'u

t

0' =u

 
(a) Velocity – time trace. 

(mean value subtracted out) 

2'u

t  
(b) Squared trace. 

I1D ≡ 
u
u

2'
 (1-D turbulent intensity) 

or  I3D = 
u

wvu )(
222 '''

3
1 ++

 (3-D turbulent intensity) 

'u , 'v , 'w  ⇒  
2'u , 

2'v . 
2'w ≠0 

y

x

'u

'v )ninteractio  wallsince , than small( 'u

 

→ 
4

3

'

'

u

u
 physical meaning 

→ diffusion term → 
2''vu  

δij →  i = j 1 εijk →  2 equal = 0 

 i≠j 0 → 0 

   → -1 

 

0
2' ≠u  → mean aquare  

(or
2'u  value can be used to 

charactering the turbulence, e.g.) 
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x

y

dx
dyudydzρ

z

Analyzing turbulent boundary layer flow 

 

),,,( tzyxu

 
Stationary volume element (C.V.) 

(a) Physical flow (instantaneous motion) 

(b) Mass flux relation to C.V. 

ρudydz + 
x∂
∂

[(ρu)dydz]dx 

Net x – dir mass flux: 

 
dx
d

(ρu)dydzdx 

 

ρ= ρ + 'ρ  

u = u + 'u  
v = v + 'v  

'''      vuuv ρρ ⇒  
 

Continuality equation: 

x
u

∂
∂ρ

 + 
y
v

∂
∂ρ

 + 
z
w

∂
∂ρ

= 0 ⇒  
1

1
x
u

∂
∂ρ

+
2

1
x
u

∂
∂ρ

+
3

3
x
u

∂
∂ρ

=0 

complete inst. Mass balance(x, y, z) (x1, x2, x3)coordinate system 

⇒
i

i
x
u

∂
∂ ) (ρ

= 0  

 

Eq. → fluctuation time average 
Eq. (complicate) 

Averaged procedure
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Steady, Incompressible: 

Mass flux consideration ⇒
i

i
dx
du

=0  (1)  

Momentum flux consideration 

x

y

udydzρ

z

y

xz

),,,( tzyxu

dx

dy

dzuvdxdz
y

uvdxdz )(ρρ
∂
∂

+

dxdydzu
x

dydzu )( 22 ρρ
∂
∂

+

uvdxdz)(ρ

 
(a) momentum fluxes 

m&  =ρAV 

M =ρAV2 = ( m& )V 

(b) pressure force 

x

y

pdydz

z

dxpdydz
x

pdydz )(
∂
∂

+

 

(c) viscous forces 

x

y

dx

dydydz
x
u
∂
∂µ

dxdz
y
u
∂
∂µ

dxdydz
x
u

x
dydz

x
u )(

∂
∂

∂
∂

+
∂
∂ µµ

dxdydz
x
u

y
dxdz

y
u )(

∂
∂

∂
∂

+
∂
∂ µµ

y
u

yx ∂
∂

∝ µτ

 
Balance in x–dir: 

x∂
∂

(ρu2)(dxdydz) + 
y∂
∂

(ρuv) (dxdydz) = 
x
p
∂
∂

− (dxdydz) + µ ( 2

2

2

2

y
u

x
u

∂

∂
+

∂

∂
) (dxdydz) 

 

Balance:  
Net Momentum efflux from 

C.V. = sum of all ext. forces acting on 
fluid in C.V. 
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'
iu

iu

iu

Basic Result (x-dir) 

x∂
∂

(ρu2) + 
y∂
∂

(ρuv) = 
x
p
∂
∂

−  + µ ( 2

2

2

2

y
u

x
u

∂

∂
+

∂

∂
) + 2

2

z
u

∂

∂
 

added term if z-dir effect 
analyzed. 

Generalization: 

j

ji

x
uu

∂

∂  ρ
= 

ix
p

∂
∂

− + 
jx∂

∂
[ µ (

i

j

j

i
x
u

x
u

∂

∂
+

∂
∂

)] (2) 

j

ji

x
uu

∂

∂  ρ
= 

1

2
1

x
 

∂
∂ uρ

+
2

21 
x

uu
∂

∂ρ
+

3

31 
x

uu
∂

∂ρ
 

 = 
x
 2

∂
∂ uρ

+
y
uv

∂
∂  ρ

+
z
uw
∂

∂  ρ
 

Justification for viscous term: 

jx∂
∂

[ µ (
i

j

j

i
x
u

x
u

∂

∂
+

∂
∂

)] = µ
jx∂

∂
(

j

i
x
u
∂
∂

) + µ
jx∂

∂
(

ix
uj
∂
∂

) 

= µ
jx∂

∂
(

j

i
x
u
∂
∂

) + µ
jx∂

∂
(

i

j

x
u
∂

∂
) = µ

jx∂
∂

(
j

i
x
u
∂
∂

) + µ
ix∂
∂

(
j

j

x
u
∂

∂
) 

0 (continuity eq.) 

for i = 1 µ
11

1
2

xx
u
∂∂

∂ + µ
22

1
2

xx
u
∂∂

∂  = µ ( 2

2

2

2

y
u

x
u

∂

∂
+

∂

∂
) 

Let: 

ui = iu  + '
iu  

uj = ju  + '
ju  

p = p  + 'p  

ρ = ρ  (incompressible) 

Instantaneous form of 
momentum equation 
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Definite: (   ) = lim 
T
1
∫

T
0

)     ( dt  

and time averaged equation (1) & (2), then apply the definite of time averaged 

quantity. 

Consider: 

 







+

∂
∂ )( '

ii
i

uu
x

= 0 

so that lim 
T
1 )(

0∫ +
∂
∂T '

ii
i

uu 
x

dt 

 = 
ix∂
∂

[ lim )(
0∫
T

iu dt + lim )(
0∫
T '

i u dt] 

 = 
ix∂
∂

[ iu ] + 
ix∂
∂

 ( '
iu ) 

 = 
ix∂
∂ '

iu (1) 

⇒   
i

i
x
u
∂
∂

= 0  continuity equation apply to the mean motion. 

Note: 
i

i
x
u
∂
∂

= 0 ⇒  
ix∂
∂

( iu + '
iu ) = 0 

 or 
i

i
x
u
∂
∂

+
i

i
x
u
∂
∂ '

= 0 

continuity equation applied to the instantaneous fluctuation 

x

y

z

'v
'u

'w

 

T→∞ 

T→∞ 

T→∞ T→∞

= 0

x
u
∂
∂ '

+
y
v
∂
∂ '

+
z

w
∂
∂ '

= 0
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Consider now equation (2): 

]))(([ ''
jjii

j
uuuu

x
++

∂
∂ ρ = )( 'pp

xi
+

∂
∂

− + )
)()(

(
''

i

jj

j

ii

j x
uu

x
uu

x ∂

+∂
+

∂
+∂

∂
∂ µµ  

 ○1  ○2  ○3  

Now 

○1  ][ ''''
jiijjiji

j
uuuuuuuu

x
ρρρρ +++

∂
∂

 = 

 Time averaged of sum is sum. 

HW.  Give final result on Fr.  

 Final working result. 

 

Ans: ρ
j

ji

x
uu

∂

∂
 + ρ

j

ji

x
uu

∂

∂ ''

 

 
2'

1u ≠ 0 
2

2'
1

x
u
∂
∂

≠ 0 

2x

1x

0≠

δ

0
2'

1 →u

0
2'

1 =u
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Consider the instantaneous form of the Momentum Equation 

 ρ
j

ji

x
uu

∂

∂
= 

ix
p

∂
∂

− + 
jx∂

∂
[µ

j

i
x
u
∂
∂ + µ

i

j

x
u
∂

∂
] (1) 

ρ = ρ ; ui = iu  + '
iu ; uj = ju  + '

ju ; p = p  + 'p  

& apply the def. of time average. 

 ρ
j

ji

x
uu

∂

∂
+ ρ

j

ji

x
uu

∂

∂ ''
= 

jx
p

∂
∂

− + 
jx∂

∂
[µ

j

i
x
u

∂
∂ + µ

i

j

x
u
∂

∂
] 

Note: 
j

ji

x
uu

∂

∂
 = iu

j

j

x
u
∂

∂
+ ju

j

i
x
u

∂
∂  = ju

j

i
x
u

∂
∂

 

0 (cont.) 

and  
ix

p
∂
∂ =

jx
p

∂
∂ δij 

1x
p

∂
∂  δ11

1x
p

∂
∂ +δ12

2x
p

∂
∂ + …….. 

2x
p

∂
∂   =   only diagonal exist. 

 

 

 

So that eq.(1) can be rewritten as: 

  ρ ju
j

i
x
u

∂
∂ =

jx∂
∂ { p δij + µ(

j

i
x
u

∂
∂ +

i

j

x
u
∂

∂
)- '' jiuuρ } 

 

 

 → 
ijtτ (total stress tensor) 

0
01 

Pressure 
force 
effect 

Viscous 
(stress) force 
effect 

Turb. Stress 
effect or 
Reynolds stress 



Advanced Fluid Mechanics 
 

 - 10 - 

Note: 
ijtτ = 

jitτ  (total stress tensor is symmetric) 

Change ij in above equation remain same right side. 

At this pt. we have 4 equations in 10 unknown. 

(1 const. & 3 Mom. Eq.) in  

 ○1  ○3  

 1u , 2u , 3u , p , 
2'

1u , 
2'

2u , 
3'

3u , '
2

'
1uu , '

3
'
1uu , '

3
'
2uu  

 

This is the closure problem. 

 Thermal energy equation → 1u , 2u , 3u , T  

 Velocity-temperature correlation → ''
1Tu , ''

2Tu , ''
3Tu , ….  (heat C. Eq.) 

Note: Reynolds transport equation. 

 ju
j

ki
x
uu

∂
∂ ''

 + ……….. = 
jx∂

∂
( '''

kji uuu ) + ……… 

 ju
j

i
x
u

∂
∂  

Let  τij = - '' jiuuρ  

 Turbulent Stress tensor 

Reduced Form 

1. 2-D. b.1. flow in the xy plane. 

yxτ

xxτ

xyτ

δ

x

y )(xU

),( yxu

yyτ x

y

z

yzτ

yzτzyτ
zzτ

 

27 terms (at worst) 

Convention
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lineelocity constant v

termsunzeroFor 

'u

'v

For this case: 

 τxx = -ρ
2'u  ≠ 0 

 τyy = -ρ
2'v  ≠ 0 

 τzz = -ρ
2'w  ≠ 0 

 τxy = -ρ ''vu  ≠ 0 

 τxz = -ρ ''wu  = 0 

 τyz = -ρ ''wv  = 0 

◎ 
2'u , 

2'v , 
3'w  are all positive. 

 τxx,  τyy,  τzz are all neglect (normal stress are compressive.) 

◎ τxy must positive. 
y
u
∂
∂

 

→ ''vu < 0 ∵ 'u < 0 ; 'v >0 

 

 

 

'v = positive → 'u  → negative 

'v = negative → 'u  → positive 

◎ distur. in u  in yz - plane flow 

 

yzτ

zyτ

y

z x
 

Turbulent 
is 3-D 

slicting 
'v < 0 → 
'u  > 0 

'v is positive, then 'u  < 0. 
Positive 'v  is tend to give a negative 'u

If τyz , τzy ≠ 0 

∴τyz = -ρ ''wv  = 0 
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z

x

y

◎ Look down on the flow 

 

xzτ

zxτ

y

x

0 if ≠zxτ

 

 

Example: 

Note: For 2-D b.l. flows 

We have 3 equations 

 6 unknowns 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

τzx = τxz = 0 

for 2-D flow. 
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Steady incompressible, 2-D B.L. flow 
Boundary Layer Form of the Equations of motion 
 
Consider boundary layer flow in the x1 - x2 plane. 

2x

1x
3x

1u 2u

turb.

 

Continuity: 
1

1
x
u
∂
∂

+
2

2
x
u
∂
∂

= 0 (1) 

x1 - dir Mom.: 1u
1

1
x
u
∂
∂

+ 2u
2

1
x
u
∂
∂

= 
ρ
1

−
1x
p

∂
∂

+ ν( 2
1

1
2

x
u

∂

∂
+ 2

2

1
2

x
u

∂

∂
)

1

2'
1
x

u
∂

−
2

'
2

'
1
x
uu

∂
∂

−  (2) 

 

x2 - dir Mom.: 1u
1

2
x
u
∂
∂

+ 2u
2

2
x
u
∂
∂

= 
ρ
1

−
2x
p

∂
∂

+ ν( 2
1

2
2

x
u

∂

∂
+ 2

2

2
2

x
u

∂

∂
)

1

'
2

'
1
x
uu

∂
∂

−
2

2'
2
x

u
∂

− (3) 

Note:  Eqs (1) ~ (3) have 6 unknowns: 1u , 2u , p , 
2'

1u , 
2'

2u , '
2

'
1uu  

2' , uu

2' , vv

area  wakeon the aviod  tohave wire  

x3 - dir Mom.: 0 = 0 + ν( 0 + 0 )
1

'
3

'
1
x
uu

∂
∂

−
2

'
3

'
2
x
uu

∂
∂

−
3

2'
3
x

u
∂

−  

 0 

 

 

really like to know τw = µ
02

1

2 =
∂
∂

xx
u

 

0 cannot 
make 
wringle 

2'
3u ≠0 Turbulent. 3-D. 

but privative 
3

2'
3
x

u
∂

 =0 
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Cannot get 
02

1

=∂
∂

xx
u

, unless solve the flow field. 

(We need 3 additional equations to effect closure.) 

 

Order – of – magnitude consideration 

Let: 1. L1 & L2 be length scales in the x1 & x2 dir. respectively, (L1~x1 & L2 ~δ)  

⇒  L2 << L1. 

1x
2x

)( 1x<<δ
s

.separation unless
thin,islayer boundary 

here. know  tohave
 typeEliptic

2. u1 & u2 be velocity scales in the x1 & x2 dir. Respectively. 

3. V2 be the velocity scale of each RS comp. 

( ''
jiuu ) 

τij = -ρ ''
jiuu  

 

 

By correlation: ''
jiuu ≡ ”stress” tensor  (Kinematics sense) 

(Verifiable experimentally) 

0

1
δ
y

2u

2v

2w

uv

0
 

Total stress 
tensor 

Reynolds stress tensor 
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Justification (cross – derivation term) 

Assume that 

)(1

1

1xU
u

 = 
n

x
x

1

1

2
)( 







δ

 

(a) Laminar case 

∞U

1u

prescribed

1x

2x

 

)( 1xU∞

solution flow potential

*δ

shapebody  erecalculat

∞U

do potential calculation on the original body. 

n = 0.5  parabolic 
)(1

1

1xU
u

 = 
2

1

2
)( 







x

x
δ

 

(b) Turbulent flow 

T

1x

2x

 

 

 

( η ≤  n ≤ 12)  power law. 

)(1

1

1xU
u

 = 
7
1

1

2
)( 







x

x
δ

~ 
12
1
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